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J.L. Blanco ∗, J. González, and J.-A. Fernández-Madrigal
Dept. of System Engineering and Automation, ETSII Campus de Teatinos, University of Málaga, E-29071

Málaga, Spain

Abstract

Hybrid maps where local metric sub-maps are kept in the nodes of a graph-based topological structure are gaining
relevance as the focus of robot Simultaneous Localization and Mapping (SLAM) shifts towards spatial scalability
and long-term operation. In this paper we examine the applicability of spectral graph partitioning techniques to the
automatic generation of metric sub-maps by establishing groups in the sequence of observations gathered by the robot.
One of the main aims of this work is to provide a probabilistically grounded interpretation of such a partitioning
technique in the context of generating local maps. We also discuss how to apply it to different kinds of sensory
data (landmarks extracted from stereo images and laser range scans) and how to consider them simultaneously. An
important feature of our approach is that the partitioning takes into account the intrinsic characteristics of the sensors,
such as the sensor field of view, instead of applying heuristics supplied by a human as in other works. Thus the robot
builds “subjective” local maps whose size will be determined by the nature of the sensors. The ideas presented here
are supported by experimental results from a real mobile robot as well as simulations for statistical analysis. We
discuss the effects of considering different combinations of sensors in the resulting clustering of the environment.
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1. Introduction

The topic of Simultaneous Localization and Map-
ping (SLAM) has received a great attention by the
robotics community in the last decade. According
to the kind of world model chosen, proposed meth-
ods can be classified broadly into metric ones, which
use geometrical information [9,11,13], and topolog-
ical ones, which model the world as a graph whose
nodes usually represent distinctive places [1,20].
Recently, hybrid models that combine both types
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of information have been proposed as a promising
solution to deal with large and complex real robot
environments. Typically, hybrid approaches attach
local geometrical maps (suitable for metric robot
localization) to the nodes of a graph-based world
representation (suitable for task planning or rea-
soning) [5,7,22]. A crucial point then is to decide
how to partition the whole map of the environ-
ment into local maps. From the different proposals
reported in the literature, the following ones are
of special significance in the context of this work:
the Atlas framework [5], where a new local map is
started when localization performs poorly in the
previous one; and, more recently, the hierarchical
SLAM presented in [7], where sensed features are
integrated into the current local map until a given
number of them is reached. However, none of these
works provide a mathematically grounded solution
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for the problem or one that does not depend on
strong human-provided heuristics that should be
manually adjusted for each specific environment.
Other interesting works pursue efficiency by hier-
archically dividing metrical maps into local regions
and subregions, or by exploiting the sparse nature
of covariance matrices in the context of EKF-based
SLAM [15,24,26]. All these are based on the prop-
erties of covariance matrices within maps of land-

marks, hence they are not applicable to other types
of observations (e.g. raw laser range scans).

The approach discussed in this paper consists of
partitioning a graph-based representation of robot
observations, usually called an appearance-based

representation when using image sensors [16,17].
Here, the sequence of observations gathered by the
robot (and the corresponding poses from which the
robot takes each observation) are set as the nodes of
an auxiliary weighted graph. By dividing this graph
into disjoint clusters of highly connected nodes we
can automatically determine a partitioning of the
observed environment into “areas”, what is required
by hybrid approaches to SLAM. The semantics of
these areas will be in general related neither to hu-
man concepts, such as rooms or a corridor, nor to
operational needs. Rather, the distribution of the
obtained sub-maps will be determined by the simul-
taneous visibility of landmarks from different robot
poses: sensors with a wider field of view (FOV) will
produce larger sub-maps since more overlap will
be found between observations. This property that
emerges naturally from the physical robot configu-
ration is consistent with the ways of the biological
world, where sensory capabilities definitively deter-
mine the spatial structure of world models.

An important contribution of this work is the dis-
cussion of a new interpretation of the above process
in probabilistic terms, hence providing a mathemat-
ical basis that justifies its usage in the context of
Hybrid Metric-Topological (HMT) SLAM [3]: the
resulting partitions will minimize a given measure
of the relation between adjacent sub maps (as ex-
plained in section 4) with the aim of obtaining sub-
maps as much closer to conditional independence as
possible.

Given an auxiliary graph of robot observations,
there are two critical issues regarding its partition-
ing: the computation of the arc weights, and the cri-
terion for performing the partitioning itself. As in-
troduced elsewhere [4], we propose to set the weights
according to the Sensed Space Overlap (SSO), a
pairwise measurement between observations that re-

First observation

Second observation 
: Sensed Space Overlap (SSO)

Fig. 1. The sensed-space overlap (SSO) is a measurement of
to what extent a pair of observations catch the same part of
the environment.

flects to what extent a pair of observations cap-
ture the same entities (points, landmarks, etc.) from
the environment, as illustrated in Fig. 1. Regarding
the criterion for partitioning the graph, we follow
previous works ([4,3,27,28]) that employ the min-
imum normalized-cut (min-Ncut), originally intro-
duced in [18]. The min-Ncut has the desirable prop-
erty of generating balanced clusters of highly inter-
connected nodes, i.e. of observations that are very
likely to correspond to the same part of the environ-
ment, under our definition for graph weights. Fur-
thermore, it can be computed efficiently by means of
an approximate solution based on spectral decom-
position, which will be also reviewed in this article.

The remainder of the article is organized as fol-
lows. In section 2 we review the spectral approach to
graph partitioning for generic graphs. Next, we will
derive expressions for computing the arc weights of
the auxiliary graph for different kinds of sensors. In
section 4 , we present the motivations and the for-
mal support for partitioning a sequence of observa-
tions within a SLAM framework, and in section 5
we explain how our method can be integrated into
an online hybrid SLAM framework. Finally, we val-
idate our ideas by presenting experimental results
from real data.

2. Background on Spectral Graph

Partitioning

In the following we review the definitions involved
in the normalized cut, the basis for the bisection of
a graph using the spectral approach, and how to
extend it for generating any number of clusters.
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2.1. Normalized Cut of a Graph

Let G = 〈V,E,Ω〉 be an undirected, weighted
graph, where V is the set of vertices or nodes and E is
the set of weighted edges or arcs, using non-negative
weight values; the symmetric |V |×|V | square matrix
Ω is the weight matrix, where its element ωij is the
weight of the arc between nodes i and j. According
to the definition introduced by Shi and Malik in [18],
the normalized cut (Ncut) is a measure associated
to the partitioning of V into two disjoint subsets A

and Ā, such as A∪Ā = V and A∩Ā = ∅, defined as:

Ncut(A, Ā) =
cut(A, Ā)

assoc(A, V )
+

cut(A, Ā)

assoc(Ā, V )
(1)

which in turn uses the standard definition of the cut

between two disjoint sets of nodes A and Ā:

cut(A, Ā)
.
=

∑

u∈A,v∈Ā

ωuv , A ∩ Ā = ∅ (2)

and of the association of two non-disjoint sets of
nodes:

assoc(A, V )
.
=

∑

u∈A,v∈V

ωuv , A ⊂ V (3)

The association of a given subgraph (A) with the
whole graph (V ) measures the intergroup “cohe-
sion”, that is, the connection “strength” between the
two sets of nodes. Note that the definitions above
fulfill:

assoc(A, V ) = cut(A, Ā) + assoc(A,A) (4)

as Fig. 2 illustrates with an example.
Partitioning graphs under the criterion of min-

imizing the cut value tends to generate groups of
no practical utility for some applications, since they
have the least connected nodes of the graph. It is
of much more interest to get subgraphs with a bal-
ance between both, the intergroup and the intra-
group cohesion, which is achieved by minimizing the
normalized cut (Ncut) defined in Eq. (1). Thus, the
minimum normalized cut (min-Ncut) of a graph V

is given by:

{A, Ā} = arg min
A,Ā

Ncut(A, Ā) (5)

The range of possible values for the Ncut can be
derived from Eq. (4), which implies that, for the
maximum value of the cut (which happens when the
nodes in a group are connected only to the other

Fig. 2. An example that illustrates the concepts of cut and

association for a pair of sets of nodes. It can be sen how the
cut involves only the arcs between two disjoint sets (A and
Ā in this case), whereas the association takes into account
all the arcs between the non-disjoint sets (A with itself in

this example). Observe how the association of a set with the
whole graph, i.e. assoc(A, V ), can be decomposed into its
cut with the rest and the association with itself.

group), the values of assoc(A,A) and assoc(Ā, Ā)
are zero, therefore:

assoc(A,V)|min = assoc(Ā,V)
∣

∣

min = cut(A, Ā) (6)

Since the minimum value attainable from a cut
is zero, corresponding to the case of no connections
between the two groups, the minimum Ncut value
is also zero. On the other hand, the maximum Ncut
value is determined by the maximum values of each
of the terms in the sum of Eq. (1). From Eq. (4) we
see that the maximum value of each of these terms
is:

max
cut(A, Ā)

assoc(A, V )
= max

cut(A, Ā)

cut(A, Ā) + assoc(A,A)

=
cut(A, Ā)

cut(A, Ā)
= 1 (7)

Thus, the Ncut provides a numerically well de-
fined measure of the quality of a partition that falls
within the range [0, 2].

As discussed in the work by Shi and Malik [18],
finding the exact min-Ncut bisection is computa-
tionally intractable (a NP-complete problem), hence
we follow their proposal for an approximate solu-
tion based on spectral decomposition, which leads
to near-optimal cuts. Their method is summarized
next for completeness, though it could be skipped
by the reader since it is not a contribution of this
work and is not necessary for following subsequent
sections.

3



50 100 150 200 250

0

0.05

0.1

0.15

0.2

0.25

5 10 15 20 25

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

2 4 6 8 10 12

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

10 20 30 40 50 60 70 80 90 100 110

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Average value

Fig. 3. Four real examples of graph spectral bisections. The
plots show the components of the eigenvectors which are
used to choose the bisection. The length of these vectors is
given by the number of nodes in the graph. The average of
the eigenvectors (horizontal lines) is used as the bisection
threshold.

2.2. Spectral Bisection

Let x be the bisection indicator vector with di-
mension N = |V |, where each element xi equals 1 or
−1 depending of the node i falling into the group A

or Ā, respectively. Let d be the vector with the sum
of the weights of the incident arcs for each node, that
is di =

∑

j

ωij . We build a diagonal matrix D with d

as its diagonal. It can be shown that the min-Ncut
problem can then be rewritten as:

arg min
x

Ncut(x) = arg min
y

yt(D − Ω)y

ytDy
(8)

where y = (1 + x) − b(1 − x), with 1 being a N × 1
vector of all ones, and

b =

∑

xi>0
di

∑

xi<0
di

(9)

Ideally, the elements of vector y should take just
two discrete values, since xi can be either 1 or -1.
However, if this condition is relaxed and y is allowed
to be real valued (this is the approximation of the ap-
proach), then Eq. 8 is no longer discrete and can be
minimized by solving the generalized eigensystem:

(D − Ω)y = λDy (10)

where L(V ) = D − Ω is a well-known term, namely
the Laplacian matrix of the graph ([4],[8]). The
above equation can be rewritten as a standard
eigensystem using z = Dy:

D− 1

2 (D − Ω)D− 1

2 z = λz (11)

It can be shown that z0 = D
1

2 1, the eigenvector
corresponding to the smallest eigenvalue in Eq. (11)
(“the smallest eigenvector” from now on), is zero.
Translating back this result to the original system in
Eq. (10), we have that y0 = 1 is the smallest eigen-
vector of Eq. (11). Since the fraction in Eq. (8) is a
Rayleigh quotient [12], and its eigenvectors are or-
thogonal 2 , then both Eq. (10) and Eq. (11) are min-
imized with the next smallest eigenvector. Thus, we
have that solving the min-Ncut expressed in Eq. (8)
is equivalent to finding the second smallest eigen-
vector, y1, of Eq. (10).

The only approximation assumed in the above
derivation is that the components of the eigenvec-
tor y1 will not take just two discrete values, but any
real number. Obviously, this complicates the bisec-
tion criterion; still, in many situations there will be
a clear distinction between the two clusters of nodes
A and Ā, as can be observed in the real examples
shown in Fig. 3. Three different criteria seem plau-
sible for assigning each node a group: (i) look at
the sign of each component of the eigenvector; (ii)
take the mean value of the eigenvector as a thresh-
old for the partition, and (iii) sweep over the differ-
ent threshold values looking for the minimum Ncut.
The second one is the criterion we have used in our
implementation due to its compromise between effi-
ciency and good results.

2.3. Partitioning into k-groups

The method presented above provides a solu-
tion to the graph bisection problem; however, this
method must be generalized to divide a graph into a
variable number of subgraphs. An easy and effective
way of achieving that is to recursively apply bisec-
tion to any of the generated subgraphs as long as
two clearly differentiated groups are obtained. The
resulting min-Ncut value for a given bisection is a
well-grounded measure of the goodness of the cut.
The Ncut of a graph, with values in the range [0, 2],
measures the inter-group cohesion of the resulting
subgraphs, inversely scaled by the intra-group cohe-
sion. Values close to zero indicate almost no connec-
tion between groups (a good partition), while values
near 2 indicate that the groups are more strongly
connected to each other than with themselves (the

2 Since the Laplacian matrix D−Ω is positive semidefinite,

D−
1

2 (D − Ω)D−
1

2 is symmetric positive semidefinite, thus
its eigenvectors are orthogonal
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(a) (c)(b) (d)

Common 
observations One of the common 

observations

Fig. 4. A graphical representation of the variables involved in computing the SSO for a pair of observations. (a)–(b) The robot
pose and corresponding observations at two time steps t and t′. (c) Some of the sensed elements (landmarks or points) may

be common to both observations. (d) A representation of the probabilistic distributions taken into account when determining
whether two elements from different observations correspond to the same map element or not. Refer to section 3.1 for further
explanation.

partition should not be done). Therefore, an inter-
mediate value must be established as a threshold
0 < τ < 2 to decide accepting the bisection or not.
This value is typically chosen heuristically ([18,25]),
and in practice a value in the range [0.2, 1] will give
good results. The procedure for k-ways partitioning
is summarized in Table 1 for clarity.

3. The Similarity Function SSO

In this section we address the problem of assigning
weights to our graph of observations. To this pur-
pose, we introduce the Sensed Space Overlap (SSO),
a pairwise similarity measure for observations that
reflects how much space in common sense a pair of
observations.

Let the map variable m be comprised of the set
of variables for each individual map element, such
that m = {m1, ...,mi}. Similarly, the observations
at a certain time step t, zt, will be considered as
composed of the observations of individual map ele-
ments, that is, zt = {z1

t , ..., zk
t }. The nature of these

“map elements” is not relevant for the generic defi-
nition of the SSO 3 . Furthermore, we will denote the

3 They would be cells for an occupancy grid map, individual
features in a landmark-based map, etc.

Table 1

Recursive Algorithm for Spectral Partitioning in k-groups

algorithm RecursivePart(G) → {P}

({A, B}, Ncut) = SpectralBisection(G)

if Ncut < τ

P = {RecursivePart(A), RecursivePart(B)}

else

P = G

end-if

end-algorithm

set of map elements sensed in a given observation zt

as M(zt). Put mathematically:

M(zt) =
{

mi : zk
t observes mi,∀ k

}

(12)

At this point, we can define the SSO function in
general for any pair of observations za and zb as the
ratio of commonly observed map elements relative
to the overall number of observed elements. Using
the notation defined above, we can write down the
generic expression for the SSO as:

SSO(za, zb)
.
=

|M(za) ∩ M(zb)|

|M(za) ∪ M(zb)|
(13)

where | · | stands for the cardinal (the size) of a set.
The SSO can be implemented differently for each
kind of sensor. Next we derive expressions for two
kinds of sensory data: landmarks and range scans. A
similar definition that could be employed for monoc-
ular images has been proposed in [27].

3.1. Landmark Observations

We are interested in computing the similarity
SSO(zt, zt′) between the observations zt and zt′

taken at time steps t and t′ from the robot poses xt

and xt′ , respectively. Recall that each observation z

comprises a set of individual features {zi : i = 1..k},
one for each sensed map element. An individual
feature zi represents the observed spatial position
of the i’th map element (a landmark in this case)
relative to the robot pose x at the corresponding
time step. All the involved variables are represented
graphically in Fig. 4(a)–(b) for clarity. The only
problematic step in computing the SSO is determin-
ing the number of matches from common elements
between the pair of observations zt and zt′ , as the
ones shown in the example in Fig. 4(c). Concretely,
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to decide if a pair of individual features zi
t and z

j
t′

correspond to the same map element, we have to
check whether the following equality holds:

xt ⊕ zi
t = xt′ ⊕ z

j
t′ (14)

being ⊕ the pose composition operator [19].
Within a probabilistic SLAM framework there is

uncertainty in measures and poses, thus we do not
know the exact value of the variables, but only their
associated probability distributions. Therefore, we
can only decide for correspondences within a given
certainty bound. This can be visualized with the un-
certainty ellipses shown in Fig. 4(d), where it can be
seen how the position of the same landmark is rep-
resented by different (although overlapping) Gaus-
sians according to each of the observations.

If we rewrite Eq. (14) as 4 ,

ǫ = (xt′ ⊖ xt) ⊕ z
j
t′ − zi

t = 0 (15)

with ⊖ being the inverse pose composition opera-
tor [19], we can then state the probability density

of actually having a correspondence through p(ǫ =
0). If we assume that the probability distributions
of both the robot pose and the landmarks can be
appropriately approximated by Gaussians (which is
acceptable in a hybrid mapping framework since co-
ordinates into local maps are always relative to a
near reference [3,5,21]), then p(ǫ) can also be ap-
proximated by a Gaussian by first-order uncertainty
propagation (we omit the straightforward calcula-
tions). As a result, p(ǫ) would be centered near the
origin if there is a correspondence, or far away other-
wise. A robust criterion for deciding the correspon-
dence is then to compute the Mahalanobis distance
from the origin to the mean of the Gaussian, and to
accept the correspondence if the distance is below,
for example, a value of 3 (which represents a 99.7%
confidence interval).

Notice that we are assuming that all the land-
marks are indistinguishable and the matching must
be determined solely from the spatial information,
but there are some situations where landmarks have
some sort of descriptor, which can then be integrated
into the calculation of the Mahalanobis distance. In
concrete, for the experiments shown at the end of
this work, we have used SIFT [10] visual descriptors

4 Using the matrix form of Eq. (14) in homogeneous
coordinates, Xtz

i
t = Xt′z

j

t′
, we can operate to obtain

X−1

t Xt′z
j

t′
− zi

t = 0, which is stated in Eq. (15) using pose
composition operators.

in addition to the spatial distance, as described in
more detail in [14].

3.2. Range Scans Observations

In principle, we could apply the same process as
in section 3.1 to compute the SSO of a pair of obser-
vations comprising raw range scans. However, there
are subtle differences in the nature of the sensory
data which make desirable the introduction of a
slight modification: due to the discrete set of scan-
ning directions it is very unlikely that exactly the
same point (not landmark) is measured while scan-
ning from different poses. We present a solution for
accounting for this fact when considering uncertain-
ties. This is the only difference with the process de-
scribed above for landmarks.

If we denote as Ci
t the covariance of the 2D point

xt ⊕ zi
t (please, refer to Fig. 4(d)), we can model

the uncertainty due to the discrete sampling of the
environment by summing an additional term σf to
the diagonal of the covariance:

Ci
t = J





Σp 0

0 Σs



Jt +





σ2
f 0

0 σ2
f



 (16)

where Σp and Σs are the covariances of the robot
pose and sensor measurement, and J is the 2 × 5
Jacobian matrix of the pose composition operator.
Since the spatial uncertainty due to the discrete
sampling of surfaces is proportional to the sensed
range (r) at each scanning direction, the value σf

can be set to rβ, being β a constant of the order of
the discrete angular steps between the scan ranges.

3.3. An Example

It is illustrative at this point to consider an exam-
ple to show how our overall method works off-line
for partitioning the graph of observations shown in
Fig. 5 (simulated raw range scans in this case). Here,
the graph is firstly divided into the groups {G1} and
{G2, G3} in the first execution of the partitioning
algorithm. Going on recursively, the latter group is
partitioned again due to its low Ncut value. The so
resulting groups {G2} and {G3} are no longer bi-
sected since the corresponding minimum Ncut val-
ues are above the threshold (set to 1 in this exam-
ple), i.e. it is better not to separate the observations
between each group. Notice that the final observa-
tion groups do roughly correspond to each of the

6



(a)

Ncut=0.31 Ncut=0.73

G1

G2

G3

(c) (d) (e) (f)

(b)

Fig. 5. An illustrative example of the graph partitioning method applied to a 2D laser map. (a) The global map obtained from
14 observations – arrows indicate the poses where observations were taken from. Notice that the map presents some orientation
errors. (b) The auxiliary graph of observations. Each node contains the sensed space data (scan), and an estimate for its pose.

The darker the arc, the higher the SSO between the observations. The observation graph is recursively partitioned into three
groups: firstly, it is divided into two groups {G1} and {G2, G3}, then, the latter group is partitioned again because it has a
minimum Ncut below the threshold. The local maps obtained from these groups are shown in (d), (c) and (e), respectively. In

(f) the weight matrix of the associated graph is shown as an image with dotted squares for the three partitions.

natural “rooms” that can be observed in the figure,
although, as commented in the introduction, our
partitioning method does not aim for “human-like”
semantics, but for a “subjective” perception of the
world by the robot.

4. Theoretical Support for Hybrid SLAM

In this section we derive a justification for the
usage of the SSO as a metric within a min-Ncut
partitioning in the context of hybrid SLAM, which
is one of the contributions of this work.

Following the standard notation in the SLAM lit-
erature [23], the ultimate goal of any probabilistic
localization and mapping method is to compute the
joint posterior density of the robot path x1:t and the
map m given the sequence of observations z1:t up to
time step t:

p(x1:t,m|z1:t) (17)

where the robot actions have been dropped for clar-
ity. Stated as a sequential Bayesian estimation prob-
lem, the statistical structure of the variables is the

one illustrated in Fig. 6(a) as a dynamic Bayesian
network. A critical issue in this model is that any
observation zt obtained by the robot depends on the
whole map, represented by m. Although this condi-
tion is rigorously true, in practice the observations
capture only a limited part of the map. Based on
this idea, the authors proposed in [3] a factorization
of the SLAM problem into a unified hybrid metric-
topological (HMT) Bayesian estimation problem.
Basically, the map m is divided into a set of met-
ric sub-maps which can be estimated from (ideally)
conditional independent sequences of observations.
Here we discuss why the min-Ncut using the SSO
for arc weights is a good choice for generating these
sub-maps. The following reasonings are also appli-
cable to other hybrid (or “hierarchical”) approaches
to SLAM [5,7], since the approximations introduced
by any approach that divides the map into sub-maps
are more negligible as the observations between the
different clusters become closer to conditional inde-
pendent (given the robot path).

As illustrated in Fig. 6(b), the SSO captures the
fact that there may be some map elements mi sensed
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both observations

Map element sensed in 

one observation only
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Fig. 6. (a) The common structure of the SLAM problem as a dynamic Bayesian network. (b) The same model if we split up

the map and the observations into its separate variables for the individual map elements. Under this perspective, the SSO can
be defined as the ratio of common map elements sensed by a pair of observations. As discussed in the text, this quantity is
related to the “degree of Independence” between the involved variables.

by just one of the two observations, and other map
elements sensed by both of them. It is straightfor-
ward to verify from Eq. (13) that the SSO function
gives values in the range [0, 1], suitable to be used
as weights in the arcs of the auxiliary observation
graph: observations sensing exactly the same map
elements are assigned a value of 1 and observations
from totally different parts of the environment have
a null SSO value.

Consider now the particular case of a null cut

value between two clusters of observations A and Ā

using the SSO as the arc weights, which in turn im-
plies a null Ncut value (see Eq. (1)), that is:

cut(A, Ā) =
∑

a∈A,b∈Ā

SSO(za, zb) = 0 (18)

Since the SSO is non-negative, it follows that:

SSO(za, zb) = 0 ∀(a, b) ∈ A × Ā (19)

which, given Eq. (13), implies that:

M(za) ∩ M(zb) = ∅ (20)

This relation can also be proved in the opposite
direction: two sets of observations that do not con-
tain any common map element have a null cut (and
Ncut) value. In other words, using the min-cut or
the min-Ncut criteria for partitioning is equivalent

to finding sets of observations with the least map
elements in common. Our choice for the min-Ncut
(rather than the min-cut) criterion is due to its de-
sirable property of producing more balanced groups
(refer to [18]).

To sum up, for the case of a null Ncut value we
can rigorously factorize the SLAM problem into
statistically-independent estimations. In practice,
it is virtually impossible to obtain such strict inde-
pendence between difference areas of a large map.
In the scope of hybrid SLAM [3], we propose to set-
tle a threshold value τ for the maximum admissible
Ncut value for actually partitioning the map into
areas, whose value coincides with that employed in
the recursive algorithm in Table 1. Note that this
threshold value does not depend on the kind of
sensors employed since Ncut values will represent
relative SSO values.

5. Sequential Operation within Hybrid

SLAM

In previous sections we have stated the problem of
partitioning a sequence of observations as an off-line
process, assuming a static and complete sequence
of observations and associated robot poses. In the
following we describe the issues raised when our
method is applied to online SLAM.

Firstly, we must remark that there may exist sev-
eral ways of integrating the partitioning technique
into a hybrid metric-topological SLAM framework.
In concrete, we will discuss here the approach taken
in [3], where the sequence of the last robot obser-
vations is partitioned to check whether the robot
has entered into a new area or not at each time
step. More generally, the recursive partitioning algo-
rithm would reveal the different areas in which the
robot observations nearby its current position can

8



be grouped into.
Within this context, a new node containing the

last observation and the current probabilistic esti-
mate of the robot pose is attached to the auxiliary
observation graph for each time step of the SLAM
algorithm. The only difference to an off-line (batch)
version of our method lies in the computation of the
weight matrix Ω, which is to be built sequentially
as new nodes are added to the graph. Let Ωt denote
the weight matrix for the sequence of observations
gathered up to time step t. For each new observa-
tion zt this matrix can be updated just by expand-
ing the previous one (Ωt−1) with a new row and a
new column:

Ωt =

















Ωt−1 ω1:t−1,t

ωT
1:t−1,t 0

















(21)

Since the weight of the reflexive arc that connects
each node with itself is not employed in the calcula-
tions of the min-Ncut, the corresponding elements
in the Ω matrix (the diagonal) can be set arbitrar-
ily to zero, as in the equation above. Each update
of the weight matrix implies the evaluation of the
SSO for t − 1 pairs of observations, corresponding
to the column ω1:t−1,t in Eq. (21). Thus, updating
the Ω matrix at each time step has a computational
complexity that increases linearly with time t. After
updating the matrix, the bisection eigenvector must
be computed (recall section 2.2), which can also be
achieved in O(t) by applying the Lanczos algorithm
[8]. To sum up, the overall complexity remains lin-
ear with the number of previous observations. This
growth in complexity over time is not a problem as
long as eventually the robot moves to a different
area and a new matrix is created. Thus, in practice
there is an upper bound to the size of this matrix,
although it will depend on the specific structure of
the environment and on the robot path.

6. Experimental Results

We firstly provide some statistical results aimed
to compare our method to other previous proposals,
and next we show some typical partitions obtained
for an indoor scenario for different combinations of
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Off-diagonal elements

Fig. 7. The information matrix of a EKF solution to SLAM
represents the shared information between landmarks in the
map. Partitioning a map implies assuming conditional inde-
pendence between different sub-maps: the matrix elements
out of the diagonal block matrices are forced to zero. We
employ this matrix to measure the information loss due to
different partitioning methods.

sensors 5 .

6.1. Statistical experiments

As discussed in section 4, separating the map into
clusters will incurs in approximation errors for most
practical situations. In order to compare the loss
caused by our method to other alternatives, we will
define a measure of how much information is lost by
performing any arbitrary partitioning of a map. The
context for this comparison is EKF-based SLAM [6]
rather than the RBPF-based approach employed in
the next section. The reason for using an EKF with
a map of landmarks is that the cross covariances
between map elements are explicitly kept in the filter
covariance matrix, whereas in grid-mapping with a
RBPF they are not available.

The covariance matrix is important for our pur-
poses since its inverse, the information matrix, rep-
resents the amount of shared information between
the different landmarks in the map. Under a sub-
map approach to SLAM, where the aim is to par-
tition the map into statistically independent clus-
ters, the information is maintained in block diag-
onal sub-matrices only, while the off-diagonal ele-
ments are discarded (i.e. assumed to be zero); this
is illustrated with an example matrix in Fig. 7. In

5 The datasets and C++ source code for these experiments
are available in http://babel.isa.uma.es/mrpt/papers/.
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Fig. 8. Results for the statistical analyses of the information loss due to map clustering. (a) The final state of an EKF after

one of the simulations. Observations are grouped (in grey) according to the three clusters produced by our method in this
particular run. (b) The average and 68% confidence interval for the information loss e, calculated for both our method (the
left-hand value) and for fixed size sub-maps comprised of k observations each. (c) The information loss and the 68% confidence

interval for our method using different values of the threshold τ .

fact, approaches to SLAM based on a Sparse Ex-
tended Information Filter (SEIF) explicitly set to
zero some entries of the matrix (which were not zero
previously), therefore assuming a certain loss of in-
formation [24,26]. We must remark that the method
presented in this paper does not rely on the infor-
mation matrix as those based on a SEIF, hence its
applicability to other kinds of mapping frameworks
such as grid mapping with RBPFs.

We propose to measure the effects of forcing con-
ditional independence (i.e. partitioning the map)
through the information loss ratio e, defined as:

e =

∑

(i,j):C(i)∩C(j)=∅

|H(i, j)|

∑

a,b

|H(a, b)|
(22)

Here H(i, j) stands for the information matrix en-
tries for landmarks i and j, and C(i) represents the
set of clusters which the landmark i belongs to. Put
in words, the loss ratio e is proportional to the sum
of all the information matrix elements out of the
block diagonal matrices for each cluster in the par-
tition (please refer to Fig. 7).

We have carried out simulations by running 150
times a simple EKF [2] for a planar path consisting
of a straight trajectory of 50 meters long through an
environment with 60 point features uniformly dis-
tributed, placed at random positions for each run.
The final state of the filter after one of the runs is

shown in Fig. 8(a), including the three clusters in
which our method divides the observations in this
case. Loops in the robot path have been intention-
ally avoided to keep the experiment simple and to
obtain generic results independently of the imple-
mentation framework.

The first result from the simulations is the com-
parison of the average information loss (e) for the dif-
ferent methods for partitioning the sequence of ob-
servations, summarized in Fig. 8(b). The left-hand
value corresponds to our proposal, in this case us-
ing a fixed value of 0.2 for the recursive bisection
threshold τ . It can be seen that the largest part of
the confidence interval for e is below 1%, which is in
contrast to the other alternative method, which con-
sists of starting a new map after a fixed number k of
observations, with k varying from 2 to 45. Although
the loss of information is not drastic (less than 3%
for most values of k), it is clear that our method
not only implies a more reduced approximation er-
ror, but it is also more predictable as revealed by
the lower variance of e. We must note that the pro-
posal of starting a new sub-map every fixed number
of features was proposed in [7], but other heuristics,
such as starting a new sub-map when localization
performs poorly [5], can be also ultimately expected
to start new maps at a regular rate if landmarks are
distributed uniformly through the environment.

A second statistical result is the characterization
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of our approach with respect to its parameter – the
threshold τ . As expected, lower values of τ lead
to lower approximation errors e, as represented in
Fig. 8(c). Though this may seems to suggest to al-
ways use a threshold close to zero, in practice a com-
promise should be found between admissible errors
and the size of the sub-maps, which grows as τ de-
creases. It is noteworthy that the expected error for
τ = 0 should be zero since sub-maps will be created
only when no observation senses two landmarks from
different clusters. Instead, our simulations give an
average information loss of e = 0.022% (negligible,
but not null). The reason of this result is that we in-
tegrate odometry in the simulations, which is known
to create correlations between landmarks even when
they have been not observed simultaneously (refer
to [26] for a enlightening discussion on this topic).

6.2. Partitioning a real indoor map

To demonstrate the partitioning obtained by our
method we have applied it to a sequence of obser-
vations gathered by one of our mobile robots, which
is equipped with a front SICK laser scanner, a rear
HOKUYO laser scanner, and a stereo camera point-
ing forward. SIFT image features are extracted from
the stereo images at each time step to generate the
set of 3D features (more details can be found in [14])
that we will consider landmark-like observations. To
reveal the differences in the obtained partitions for
each kind of sensor and their possible combinations,
we have performed the partitioning four times: us-
ing the front laser scanner only, both laser scanners
(providing a field of view of almost 360◦ – except for
small lateral dead angles), visual landmarks only,
and the three sensors simultaneously. When several
sensors are combined into the same observation si-
multaneously, the corresponding SSO is computed
by averaging the individual SSO functions, as can
be easily derived from the definition in Eq. (13). The
effects are discussed below.

The results are summarized in Fig. 9, where each
row represents one set of sensors, and the left col-
umn shows the resulting groups of observations on
an occupancy grid map of the environment (visual
landmarks are not shown for clarity). The middle
column shows the final SSO (arc weight) matrix for
the time-ordered sequence of observations through
the environment. Since the robot revisit the same
places several times, it is remarkable that many off-
diagonal elements contain high SSO values, i.e. they

correspond to close areas. In the right column in
the figure we can observe the rearranged matrices,
built up by making the observations within the same
cluster to have consecutive indexes: after clustering,
the output matrix should be block diagonal ideally.
In the figure we can see how the rearranged matri-
ces for the experiments are clearly not block diag-
onal, but certainly most of the non-zero elements
are approximately contained within the block diag-
onal matrices. The elements outside these diagonal
blocks are the information that would be lost in the
hybrid SLAM approach.

It is interesting to note the differences in the par-
titions obtained from the different sensors. Firstly,
for the case of just one 180◦ FOV laser scanner (the
top row in the figure) there exists overlap between
different detected areas. For example, the groups #1
and #2, or the groups #4 and #5. However, actually
each overlapping group contains observations with
opposite robot headings, that is, since the FOV is
180◦ there is almost no overlap between the observa-
tions taken by the robot going in one direction and
in the opposite. This does not occur in the second
case, when two laser scanners are considered simul-
taneously covering almost 360◦ around the robot.
For these sensors, we obtain the clustering closest to
the “human” concept of rooms, with almost no over-
lap between the resulting areas. This is in contrast
to the results from a stereo camera (third row in
Fig. 9), with a narrow FOV of roughly 65◦. We pre-
process the images from the camera to obtain a set
of 3D landmarks, which we consider as the camera
observations themselves (please refer to our previ-
ous work [14] for a description of the process). More
different areas are detected in this case (10 areas),
whereas they were just 4 for the case of two laser
scanners. The reason is that the narrow FOV leads
to many groups of a few observations each, specially
if the robot rotates.

In the case of using all the three sensors (two laser
scanners and the stereo camera) we obtain the clus-
ters shown in the bottom row of the figure. Here the
weight matrix Ω is the average of those from the in-
dividual sensors (notice how this matrix, in the cen-
tral column of the figure, is a mixture from the ma-
trices at the second and the third row). We obtain 6
areas, which is an intermediary value between that
obtained from the two laser scanners and the cam-
era independently. Therefore, mixing sensors with
largely different FOVs (360◦ vs. 65◦) could be seen
as having one single sensor with an intermediate
FOV, a natural consequence of computing SSO by
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Fig. 9. Results from partitioning a map gathered by a real mobile robot. The left column shows the resulting clusters of
observations obtained by the proposed method, while the middle and right columns contain the weight matrices Ω before and
after rearranging the elements according to the partitioning, respectively. It can be seen how after the rearrangement most of

the high values in Ω are within the diagonal blocks. Each row of graphs presents the results for a different set of sensors: one
180◦ laser scanner, two laser scanners, a stereo camera, and the three sensors simultaneously. See section 6.2 for a discussion
of the results.
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averaging over the different sensors.
Finally, we can observe in the rearranged weight

matrices (at the right in Fig. 9) how most of the
SSO high values are within the diagonal blocks cor-
responding to the clusters computed by our method.
However, a few values are left out of these blocks.
Within a hybrid SLAM method this would mean
that the information out of the block-diagonal ap-
proximation of this matrix would be lost.

7. Conclusions

In this paper we have used spectral techniques for
efficient graph partitioning in the generation of sub-
maps for hybrid SLAM frameworks. Through the
introduction of the SSO function, we have provided
a general formulation for partitioning sequences of
observations from different sensory data, illustrated
with both range scans and landmarks. An important
contribution of this work is the discussion of a prob-
abilistically grounded interpretation of the usage of
min-Ncut and the SSO function to probabilistic hy-
brid SLAM. Moreover, we have derived expressions
for applying our ideas to several kind of sensors that
ultimately can be modeled either as range sensors or
landmark-detectors. We provide a statistical analy-
sis of our method compared to other alternatives, as
well as analyzed how the use of sensors with differ-
ent FOVs affects the resulting clusterings obtained
from a real data set. Thus, our approach produces
robot “subjective” local maps. The discussed meth-
ods have been successfully integrated in a framework
for hybrid mapping [3].
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concurrent map building and localization. Robotics and
Autonomous Systems, 54(2):159–164, 2006.

[17] PE Rybski, SI Roumeliotis,
M. Gini, and N. Papanikolopoulos. Appearance-

based minimalistic metric SLAM. In Proceedings of

the IEEE/RSJ International Conference on Intelligent

Robots and Systems, volume 1, pages 194–199, 2003.

[18] J. Shi and J. Malik. Normalized Cuts and Image
Segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905, 2000.

[19] R. Smith, M. Self, and P. Cheeseman. A stochastic
map for uncertain spatial relationships. The fourth

international symposium on Robotics Research, pages
467–474, 1988.

[20] T. Sogo, H. Ishiguro, and T. Ishida. Acquisition and
propagation of spatial constraints based onqualitative

13



information. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(3):268–278, 2001.

[21] J.D. Tardos, J. Neira, P.M. Newman, and J.J.
Leonard. Robust Mapping and Localization in Indoor
Environments Using Sonar Data. The International

Journal of Robotics Research, 21(4):311–330, 2002.
[22] S. Thrun and A. Bucken. Integrating grid-based

and topological maps for mobile robot navigation.
Proceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI-96), pages 944–950, 1996.

[23] S. Thrun, W. Burgard, and D. Fox. Probabilistic
Robotics. The MIT Press, September 2005.

[24] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani,
and H. Durrant-Whyte. Simultaneous Localization and
Mapping with Sparse Extended Information Filters. The
International Journal of Robotics Research, 23(7-8):693,

2004.
[25] O. Veksler. Image segmentation by nested cuts. In

Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, volume 1, pages 339–

344, 2000.
[26] M.R. Walter, R.M. Eustice, and J.J. Leonard. Exactly

Sparse Extended Information Filters for Feature-based
SLAM. International Journal of Robotic Research,
26(4):335–359, 2007.

[27] Z. Zivkovic, B. Bakker, and B. Krose. Hierarchical
map building using visual landmarks and geometric
constraints. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pages 2480–2485, 2005.

[28] Z. Zivkovic, B. Bakker, and B. Krose. Hierarchical map
building and planning based on graph partitioning. In
Proceedings of the IEEE International Conference on
Robotics and Automation, pages 803–809, 2006.

14




