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Abstract— Range-Only SLAM (RO-SLAM) represents a dif-
ficult problem due to the inherent ambiguity of localizing
either the robot or the beacons from distance measurements
only. Most previous approaches to this problem employ non-
probabilistic batch optimizations or delay the initialization of
new beacons within a probabilistic filter until a good estimate
is available. The contribution of this work is the formulation of
RO-SLAM as an online Bayesian estimation process based on a
Rao-Blackwellized Particle Filter. The conditional distribution
for each beacon is initialized using an additional particle filter
which, eventually, is transformed into an extended Kalman filter
when the uncertainty becomes sufficiently small. This approach
allows the introduction of new beacons without either delay
or any special non-probabilistic processing. We validate our
proposal with experiments for both simulated and real datasets.

I. I NTRODUCTION

Simultaneous Localization and Mapping (SLAM) is one
of the central issues required for truly autonomous mobile
robots, hence the intense research effort that has been
devoted to this field in the last years. One of the most
widespread approach consists of using probabilistic tech-
niques (Bayesian inference) to estimate the robot position
and the map given the sequence of imperfect actions and
noisy observations of the robot. Specific methods have been
proposed to cope with the differences caused by using certain
map representations, e.g. landmarks or occupancy grids, or
robotic sensors, e.g. cameras or laser scanners. For a review
of many of these methods the reader can refer to [1], [15].

This paper addresses the problem of SLAM when using
range-only sensors. These devices can measure the distance
to each one of a set of artificial beacons distributed through-
out the environment, identifying them individually. There
are two important differences between range-only SLAM
(RO-SLAM) and the more common range-bearing SLAM
[2]. Firstly, in RO-SLAM we can avoid the problem of
data association since most practical devices used for range
measurement are able of distinguishing which beacon is
being detected, e.g. Ultra-Wide-Band (UWB) devices [5].
Secondly, the information provided by the measures is highly
ambiguous: in general, each measurement defines a probabil-
ity density for the potential positions of the sensed beacon,
but for a range sensor the non-negligible part of this density
has an annular shape, since the beacon is within a “ring”
with radius equal to the range measurement. To illustrate how
ambiguous this information can be, consider the motivating
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example depicted in Fig. 1, where several of these “rings”
are shown for different positions of the robot. It can be
observed how all the circles pass through the real position of
the beacon, although they do not coincide precisely due to
sensor noise. A difficult issue in RO-SLAM is the existence
of multiple, apparently consistent locations for the beacon,
as can be seen in the figure. Recall that, in SLAM, the
estimation of the position of the beacons must be carried
out simultaneously to the robot localization itself, rendering
RO-SLAM even more challenging.

Several works dealing with RO-SLAM have been reported
in the last years. In [14] the authors propose a geometric
method for adding new beacons to a map using delayed
initialization, but a partially known map is required at the
beginning. Range-only localization is addressed in [6] and
[7] under the classic EKF-based implementation of SLAM,
where the authors propose an approximation of the sensor
model inspired by the circular-shaped distributions obtained
for range sensors. They also address SLAM but assuming a
prior knowledge about the beacon locations. Sub-sea RO-
SLAM is demonstrated in [10] with good results even
with the lack of a reliable ego-motion estimation (such as
odometry for ground vehicles). The main difference with the
present work is the usage of a least-square error minimization
procedure instead of a probabilistic filter. The work in [11]
achieves RO-SLAM through a different strategy: firstly, an
initial estimation of the position of each beacon is computed
using a voting scheme over a 2D grid. An interesting
contribution of that work is a preliminary robust filtering
of outliers using a graph cut approach. Once the initial
estimation converges, a standard EKF deals with the SLAM
problem. A similar scheme is adopted in [3], where the
authors also explore the possibility of inter-beacon range
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Fig. 1. Example of how ambiguous can become the localization of a
beacon from range measurements only. For a valid position hypothesis it is
necessary a relatively large distance between the different observations.

Jose Luis
Cuadro de texto
                                            DRAFT VERSION 
To appear in IEEE International Conference on Robotics and Automation, Pasadena CA (USA), May 2008. 



measurements to improve map building.
The contribution of the present work is thus a formulation

of probabilistic RO-SLAM under a pure Bayesian viewpoint
and without any additional non-probabilistic step. The usage
of a probabilistic framework is motivated by its well-known
suitability for effectively fusing information from different
sources. In contrast to many previous works, we apply a
Bayesian filter from the beginning, taking advantage of a
Rao-Blackwellized particle filter (RBPF) [4] to decouple
the estimation of the robot poses and the map. By doing
so, we can freely choose the most convenient distribution
for the beacons at each time step. We derive the equations
for adding and updating a beacon to the map as a set of
weighted samples, and then converting it into a Gaussian
only when the distribution converges to a single location.
This leads to a consistent probabilistic framework for RO-
SLAM where beacons are inserted the first time they are
observed, independently of whether the map already contains
well-localized beacons. This follows from the property of
conditional independence of the mapped beacons under the
RBPF approach ([4], [9]).

Another advantage of this approach is that we maintain
the best estimation of each beacon at each time step, and
this information is always available to improve the robot
localization. In most previous works this information cannot
be exploited until the knowledge about the beacon location
becomes sufficiently precise.

II. RBPF-BASED SOLUTION TO RO-SLAM

The purpose of a probabilistic approach to RO-SLAM is
to obtain the joint probability distribution of the robot pose
(or path) and the map, given all the available data at some
instant of time. This distribution represents our knowledge
about the robot path, the map, and all their correlations.

Motivated by the strong non-Gaussianity of the distribu-
tions found in RO-SLAM, i.e. a circular-shaped observation
likelihood, we propose to take advantage of the factorization:

p
(
xt,m|zt, ut

)
= p

(
xt|zt, ut

)

︸ ︷︷ ︸

Robot path

p
(
m|xt, zt, ut

)

︸ ︷︷ ︸

The map

(1)

to separate the representations of the robot pathxt and the
map m. Robot actions and observations are denoted asut

and zt, respectively. Note the usage of the superscriptt to
designate sequences of variables from time step1 to t.

Since we adopt a sample-based representation for the robot
path, the result is a Rao-Blackwellized particle filter (RBPF)
where a conditioned distribution of the map is stored for
each path hypothesis [4]. An important consequence of this
approach for our purposes is that, assuming independence
between the errors in the measurements, the map density
can be further factorized as:

p
(
m|xt, zt, ut

)
=

∏

l

p
(
ml|x

t, zt
l

)
(2)

with theml being the different individual beacon positions in
the mapm, andzt

l being the observations (i.e. ranges) of the
corresponding beacons. Note that the actionsut have been

dropped since they do not provide additional information.
The factorization in (2) implies the conditional independence
between the individual beacons, thus their densities are stored
separately and we can employ the kind of representation that
is most convenient at each time step without affecting either
the robot path or other beacons.

Concretely, for each beacon that is observed for the first
time, we add a new auxiliary1 particle filter (PF) to each
one of the RBPF samples in order to perform the Bayesian
estimation of the new beacon. As described in the next
section, this auxiliary PF will eventually converge from the
initial circular shape towards a small Gaussian-like shape,
and at this moment it will be replaced (without loss of the
estimated uncertainty) by a standard EKF which performs
reliably for reduced uncertainties. The switch into an EKF is
justified by the particle depletion problem that any standard
implementation of a PF eventually suffers [13].

Next we describe the general procedure to iterate the
RBPF with each new action and observation from the robot,
while the details on how to compute some important terms
are derived in the following section.

Let the set ofM samples of the path be referenced asx[i],t

for i = 1...M , where each posext comprises a 2D location
plus a heading. These samples have associated importance
weightsω

[i]
t and are approximately distributed according to

the path posterior, i.e. the left part of the product in (1).
As it is common in SLAM, we initialize the filter without
any prior knowledge, thus the robot starting location can be
arbitrarily taken as the coordinate origin, that is,x0 = 0.

For each time step, new particles are drawn using the robot
motion model, which in our case is derived from odometry
readings, that is,x[i]

t ∼ p(xt|x
[i]
t−1, ut). Next, importance

weights are updated as:

ω
[i]
t ∝ ω

[i]
t−1p

(

zt|x
t,[i], zt−1

)

(3)

for which we need a probabilistic observation model, derived
in the next section. If necessary, the particles may be resam-
pled to preserve the diversity of the representation. This is
typically performed whenever the effective sample size falls
below a given threshold [8]. After updating the estimate of
the robot path, the corresponding conditional distributions of
the map must be also updated to account for the new range
readings, as discussed later on.

Although it is not strictly necessary, in order to simplify
the exposition we will assume coplanarity between all the
beacons and also that the robot moves over a 2D surface
from which all the beacons are at a fixed height. Any of
these restrictions can be straightforwardly removed from
our method at the cost of an increase in the computational
burden.

III. I MPLEMENTATION OF THE RBPF

This section describes the two probabilistic representations
of beacons in the map (PF and EKF), and how to compute

1We denote these filters asauxiliary to avoid confusion with the main
RBPF. Note that this term is not related at all to theauxiliary particle filters
introduced in [12].



Observation likelihood

(Monte Carlo)

Observation likelihood

(Gaussian)

Beacon position uncertainty cases:

-1 0 1

-1

0

1

-1 0 1

-1

0

1

Real robot 

location

-1 0 1

-1

0

1

Real robot 

location

Real robot 

location

-1 0 1

-1

0

1

Real robot 

location

-1 0 1

-1

0

1

Real robot 

location

-1 0 1

-1

0

1

Real robot 

location

B
ea

co
n

 u
n

ce
rt

ai
n

ty
: 

S
m

a
ll

B
ea

co
n

 u
n

ce
rt

ai
n

ty
: 

M
ed

iu
m

B
ea

co
n

 u
n

ce
rt

ai
n

ty
: 

L
ar

g
e

-0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

Real robot 

location

Beacon position samples 

and Gaussian fit.

Small

-0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

Medium

-0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

Large

Fig. 2. A comparison of the observation model as computed using
the Monte Carlo (MC) (central column) and the EKF (right column)
approximations. These two columns represent the observationlikelihood as
an intensity image over the 2D plane of robot positions, wherebrighter gray
levels correspond to higher values of the likelihood. Each row illustrates a
situation with a different level of uncertainty in the beacon localization,
represented in the left column. The probability density of the beacon
position is depicted in the two forms considered in the text: as a set of
samples, and as a Gaussian, in this case computed to fit the samples.
Taking the MC approximation as the reference, it can be observed how the
EKF approximation performs poorly when the uncertainty in thebeacon
position becomes excessively large, assigning low likelihood values to the
real location of the robot (the origin).

the observation model and update the map for each of those
two forms.

A. Observation Model for the Path Estimate

We assume that the range sensor provides measurements
zt corrupted with additive zero-mean Gaussian noisevt with
a varianceσ2

r , that is:

zt = b (|xt − m|) + vt (4)

where the functionb(·) can be used to emulate transfor-
mations to the real distance between the sensor and the
beacon, given by|xt − m|. For example, it could be used
to compensate the systematic error orbias of the device. In

this work we assume for simplicity thatb(d) = d. Note that
we omit the beacon indexl for clarity in the notation, thus
the symbolm will represent a single beacon, not the whole
map.

Also notice how the observation model in (4) requires a
concrete value for the beacon positionm, whereas we only
have a distribution of its potential values (recall that at this
level there is no uncertainty about the robot path, since the
distributions are conditioned a given path hypothesis). In
other words, the uncertainty in the location of the beacon
becomes uncertainty in the expected range, and thus its
density is given by:

p(zt|x
t,[i], zt−1) =

∫

p(zt|x
[i]
t ,m)p(m|xt−1,[i], zt−1)dm

(5)

Observe that the second term within the integral corre-
sponds to the map hypothesis for each RBPF particle. At
this point we can find three different situations depending
on the state of the beacon within thei’th particle:

(a) The beacon is not present in the map. This will happen
whenever a beacon is observed for the first time. In this
case the observation likelihood can be set to any arbitrary
constantp(zt|x

t,[i], ·) = η, since it will have no effects on
the estimation of the path: there are no previous references
of that beacon that could improve the knowledge about the
robot location.

(b) The beacon is represented by an auxiliary particle filter.
Then the location of the beacon is approximated by a set of
N samplesm[i,k] with weightsβ[i,k] for k = 1...N . In this
case the integral in (5) becomes a sum:

p(zt|x
t,[i], zt−1) =

=

∫

p(zt|x
[i]
t ,m)

N∑

k=1

β[i,k]δ(m − m[i,k])dm

=

N∑

k=1

β[i,k]p(zt|x
[i]
t ,m[i,k]) (6)

=

N∑

k=1

β[i,k]N (zt;
∣
∣
∣xi

t − m[i,k]
∣
∣
∣ , σ2

r)

where the last step (replacing the observation model by
a Gaussian) follows from the definition in (4) since the
observation, conditioned to some known hypotheses of the
robot pose and the beacon, only conserves the randomness
owed to the Gaussian noise with varianceσ2

r .
(c) The beacon is already represented by a Gaussian, that

is, p(m|xt−1,[i], zt−1) = N (m; m̂t, Pt), with m̂t and Pt

standing for the mean and the covariance matrix, respec-
tively. Since the Gaussian representation will be used onlyfor
reduced uncertainties in the beacon position, it is acceptable
here to employ a first-order propagation of the uncertainty
from the beacon to the observationzt:

p(zt|x
t,[i], zt−1) = N (zt|ẑt, σ

2
t )

ẑt =
∣
∣xi

t − m̂t

∣
∣ (7)

σ2
t = HPtH

T + σ2
r



where the matrixH is the Jacobian of the function in (4)
with respect to the beacon coordinates.

Up to this point, we have defined how to compute the
observation likelihood term for the two possible representa-
tions of a beacon in the map: a set of Monte Carlo samples,
and a Gaussian. To clarify and motivate this distinction, we
show in Fig. 2 some examples for the computation of the
observation likelihood in three different scenarios, eachone
corresponding to a row in the figure. The left charts depict the
real position of the robot and the current knowledge about the
beacon in the two forms: a set of samples, and the Gaussian
computed to fit the samples. A remarkable observation
is how both representations lead to a similar observation
likelihood when the uncertainty is small (first row), while
the output of the Gaussian approximation degenerates as the
the uncertainty becomes larger. For example, in the third row
we have beacon samples distributed along a180◦ arc, giving
a clearly defined peak of the likelihood at the true robot
position. In contrast, the Gaussian approximation assigns
higher values to a wide area of the state space but a null
value to the actual robot pose. This is a clear consequence
of the mismatch between the actual distribution of the beacon
and the fitted Gaussian, as observed in the left-bottom chart.

B. Map Update

In this section we address how to initialize and update the
densities for each beacon in the map, which correspond to
the map part of the factorization in (1).

By applying the Bayes rule and the definition of condi-
tional probability, it can be shown that our estimation of the
map m given the new data available at each time step (xt

andzt) is described by:

p(m|xt, zt)
︸ ︷︷ ︸

Posterior

∝ p(m|xt−1, zt−1)
︸ ︷︷ ︸

Prior

p(zt|m,xt, zt−1)
︸ ︷︷ ︸

Sensor model

(8)

To follow the evolution of the probabilistic representation
of the beacon, assume that a new beacon is detected at some
instant of time t (not necessarily at the first time step).
Then, according to (8) we must multiply the prior belief
with the observation likelihood, but due to the absence of
any previous knowledge about the beacon it is reasonable to
assume an uniform distribution over the whole state space
of m. Thus, the first time a beacon is observed (8) reduces
to computingp(m|xt,[i], zt) = p(zt|m,x

[i]
t ) (note howm is

the only free variable). Here we initialize the Monte Carlo
representation of the beacon density by drawing samples
m[i,k] along the circle centered atx

[i]
t at any direction in the

whole 360◦ range and at a distance ofzt plus the additive
random noise – refer to Fig. 4(a) for an example. Since
these samples are distributed following exactly the target
distribution, we assign them equal initial weightsβ[i,k]. The
numberN of particles to generate at this point is a crucial
parameter of our approach: too few particles may lead to
a wrong estimation, while an excessive number increases
the computational burden. We have obtained good results in
different scenarios using the heuristic ruleN = α ·zt, where
α can vary between400 and2000. We must remark that, if

the first observation of a beacon is an outlier, our approach
will fail in correcting its position, thus we assume in this
work that outliers have been already discarded.

In subsequent observations of the beacon, these samples
are modified to implement the recursion in (8). It can be
easily shown that the Bayesian update becomes a change in
the weights of these samples as:

β
[i,k]
t ∝ β

[i,k]
t−1 p(zt|x

[i]
t ,m[i,k]) (9)

Note that the rightmost term was already computed in (6),
thus it does not need to be computed again. Moreover, we
have observed that, if the robot is moving, a large part of the
particles are quickly assigned negligible weights after a few
iterations, thus they can be removed from the set to reduce
the computational cost. In our implementation we drop
particles with weights below10−5 times the highest weight.
This simple strategy reduces the computational burden of
our method and leads to a practical implementation, as
demonstrated in the experimental results.

As new observations are fused into the map, the beacon
estimates will eventually converge towards small areas of the
space where most likely the beacons should be found. The
test we have applied to check whether a given distribution
should be transformed into a Gaussian is to obtain the
covariance matrix computed from all the samplesm[i,k] and
then check whether the major axis of the corresponding
ellipsoid is below a given limit. This is implemented as a
threshold for the largest eigenvalue of that covariance matrix.
The threshold value should be selected to be a few times
smaller than the sensor standard deviation (σr) in order to
assure the quality of the linearized approximations assumed
for the Gaussian.

Finally, the update of the beacon distribution in Gaussian
form is performed through a standard EKF, linearizing over
the range observationszt.

IV. EXPERIMENTAL RESULTS AND SIMULATIONS

In this section we will firstly validate our proposal with
experimental results from a real robot equipped with range-
only sensors. Next we discuss the results from simulated data
to demonstrate the possibility of adding new beacons at any
instant of time. They are also described the typical evolution
of the RBPF and the differences in the computation burden
between time steps. We encourage to also view the online
video2 for these experiments.

A. Real robot dataset

We have applied the method proposed in this work to a
dataset gathered by a real robot while it moves, controlled by
a human, throughout a room traversing an overall path of 30
meters. For this experiment we have installed three “PulsON”
Ultra-Wide-Band (UWB) devices from TimeDomain as static
beacons in the walls at a fixed height, in order to enable the
coplanarity assumption. The mobile robot is equipped with
a fourth device which actively requests the distance to the

2Available in http://www.youtube.com/watch?v=CcW2D4kN3E4.
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Fig. 3. Experimental results for the real dataset. (a) A snapshot of the environment where the data have been gathered, highlighting the location of the
three UWB beacons. (c)–(e) The state of the filter at differenttime steps, with the beacons being labeled as #1, #2, and #3. Observe how all the beacons
have been well-localized before the robot moves one meter fromthe beginning.

TABLE I

Distance Ground truth Estimation Error (%)
B1↔ B2 9.913 m 10.282 m 3.6%
B1↔ B3 4.350 m 4.676 m 7.0%
B2↔ B3 6.346 m 6.520 m 2.7%

others in a timely fashion. Refer to Fig. 3(d) for a snapshot
of the experimental setup. The range information from the
UWB devices is synchronized to the robot odometry, which
will be used as input to the probabilistic motion model in
the RBPF.

In the first iteration of our method, the three beacons
are initialized as samples distributed in a ring-like shape,
as plotted in Fig. 3(e). It can be seen how these distributions
quickly converge to the most likely positions of the beacons:
after 45 iterations the uncertainty in the three beacons has
been drastically reduced, as can be observed in Fig. 3(h).
The evolution of the mean value of the 2D coordinates
of each beacon and the associated uncertainties are also
plotted in Fig. 3(a)–(c), respectively. Note that the maps
represented in this section are always those ones associated
to the particle with the highest weight in the RBPF, which
in this experiment comprises of 100 samples.

These results show that the RBPF obtains an estimate of
the beacon locations with the uncertainty decreasing as new
measures are considered, but it should be also verified that
the different distributions converge to the actual locations
of the beacons. However, in practice it is difficult to obtain
reliable measurements of the absolute beacon coordinates.
Alternatively, we have measured the relative distances be-
tween the beacons, which are compared in Table I to the
corresponding values for the final estimate of our method.

B. Simulated Data

We also present the results of our method for a simulated
dataset with the purpose of demonstrating the ability of
incorporating new beacons at arbitrary instants of time,
and to show how the computational burden varies as the
probabilistic representations of the beacons change within
the filter.

For this experiment we have simulated range readings for
15 static beacons as the robot describes a circular path. A

maximum detection range of 5 meters has been forced into
the simulated sensor to allow the robot to discover new
beacons as it moves. Measurements are also corrupted by
a Gaussian noise withσr = 0.03m. The evolution of the
filter is summarized in Fig. 4(a)–(d) at different time steps.
In this case we can compute the absolute errors in the beacon
localization, which are plotted in Fig. 4(e). All the beacons
converge to a final error smaller than 0.1 meters.

We should remark how the beacon labeled as #10 takes
a long time to converge since it comes out of the detection
range of the robot, but it quickly converges after the robot
approaches again (observe the abrupt decrease in the beacon
error in Fig. 4(e) at step 60). As an example of a beacon
added to the map some time after the beginning, consider
the beacon #12, added at time step 26. This beacon still
presents a clear ring-shaped distribution in Fig. 4(c) while
most of the others have already converged.

The computation time required by each iteration of our
method depends on how many beacons are observed and
their representation in the RBPF particles: for the sample-
based representation the time consumed is proportional to the
number of samples, while for the Gaussian representation a
fixed time is required to update the EKF. In the typical case
of several samples in the auxiliary particle filters (e.g. more
than 100), their update requires more time than in the case of
the Gaussian representation. However, since the number of
samples in the distribution of the beacons can decrease with
new observations (recall section III-B), the time consumption
smoothly decreases from a maximum (after inserting new
beacons in the map) to the point when the auxiliary particle
filter is replaced by an EKF. This pattern can be clearly
observed in the graphs Fig. 4(e)–(f).

V. CONCLUSIONS

In this work we have analyzed the specific hurdles found
in SLAM based solely on range measurements, as opposed
to the more common case of range and bearing SLAM. We
have maintained that a pure probabilistic, Bayesian solution
is more desirable than other batch processing techniques
due to its capability of consistently fusing information from
different observations taking into account the associated
uncertainty. A solution based on a RBPF has been proposed
due to its ability for keeping the conditional distributions



Time step #0

2 m

(a) (b) (c)

(d) (f)

(e)
0 20 40 60 80 100 120 160

0

1

2

3

4

5

6

B
ea

co
n

er
ro

rs
(m

)

Time steps

Added #11 Added #12 Added #0 Added #2

0 20 40 60 80 100 120 160
0.01

0.1

1

10

100

Average: 0.69 sec

C
o

m
p

u
ta

ti
o

n
ti

m
e 

(s
e
c
)

Time steps

Time step #10

#8

#7
#6

#14

#3#5

#4

#13

#1

#9
#10

Time step #30

Robot path

#4 #8

#9 #1

#7

#6

#13
#14

#3
#5

#11

#12

#10

Time step #100

Robot path

#4
#8

#9 #1
#7

#6

#13

#14

#3

#5

#11

#12

#10

#0

#10

Fig. 4. Experimental results for the simulated dataset. (a)–(d) Four snapshots of the state of the RBPF at different time steps, where the beacons are
labeled as #0,...#14. It can be appreciated the “ring” shapeof the distribution for all the beacons initialized at the first iteration, which quickly converge
towards the true beacon positions. (e) The errors from the mean estimate of each beacon and the ground truth. (f) The computation time at each time step.

separately, which is a great advantage in RO-SLAM since we
can then initialize the distribution of the beacons as auxiliary
PFs and convert them into EKFs when this becomes a
better choice. As demonstrated with experimental results,our
method has a high computational burden in the first iterations
after the addition of new beacons, but it quickly becomes
more efficient as the auxiliary particles are removed. As
a result, we have an average execution time below 0.1s
per iteration in some cases, rendering our method capable
of online execution. Future research will address further
improvements in efficiency and a more realistic management
of outliers.
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