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A Pure Probabilistic Approach to Range-Only SLAM

Jose-Luis Blanco, Javier Goalez, and Juan-Antonio Feandez-Madrigal

Abstract— Range-Only SLAM (RO-SLAM) represents a dif- example depicted in Fig. 1, where several of these “rings”
ficult problem due to the inherent ambiguity of localizing are shown for different positions of the robot. It can be
either the robot or the beacons from distance measurements hcarved how all the circles pass through the real position o
only. Most previous approaches to this problem employ non- o .
probabilistic batch optimizations or delay the initialization of the beaco.n, altho_ugh thgy do.not commde.premsely due to
new beacons within a probabilistic filter until a good estimate ~Sensor noise. A difficult issue in RO-SLAM is the existence
is available. The contribution of this work is the formulation of ~ of multiple, apparently consistent locations for the beaco
RO-SLAM as an online Bayesian estimation process based on a gs can be seen in the figure. Recall that, in SLAM, the
Rao-Blackwellized Particle Filter. The conditional distribution  octimation of the position of the beacons must be carried

for each beacon is initialized using an additional particle filter t simult v to th bot | lization itself .
which, eventually, is transformed into an extended Kalman filter out simultaneously to the robot localization itself, rendg

when the uncertainty becomes sufficiently small. This approach RO-SLAM even more challenging.
allows the introduction of new beacons without either delay Several works dealing with RO-SLAM have been reported
or any special non-probabilistic processing. We validate our jn the last years. In [14] the authors propose a geometric
proposal with experiments for both simulated and real datasets. method for adding new beacons to a map using delayed
initialization, but a partially known map is required at the
I. INTRODUCTION beginning. Range-only localization is addressed in [6] and
Simultaneous Localization and Mapping (SLAM) is ond 7] under the classic EKF-based |mple.men'tat|on of SLAM,
of the central issues required for truly autonomous mobil@here the authors propose an approximation of the sensor
robots, hence the intense research effort that has be@@del inspired by the circular-shaped distributions otsteli
devoted to this field in the last years. One of the modP' range sensors. They also address SLAM but assuming a
widespread approach consists of using probabilistic tech!ior knowledge about the beacon locations. Sub-sea RO-
niques (Bayesian inference) to estimate the robot position-AM is demonstrated in [10] with good results even
and the map given the sequence of imperfect actions a¥th the lack of a reliable ego-motion estimation (such as
noisy observations of the robot. Specific methods have be@{ometry for ground vehicles). The main difference with the
proposed to cope with the differences caused by using nertdi"€Sent workis the usage of a least-square error minirozati
map representations, e.g. landmarks or occupancy grids, jPcedure instead of a probabilistic filter. The work in [11]
robotic sensors, e.g. cameras or laser scanners. For avrevighieves RO-SLAM through a different strategy: firstly, an
of many of these methods the reader can refer to [1] [15]|_n|t|al estimation of the position of each beacon is comgute
This paper addresses the problem of SLAM when usingSing @ voting scheme over a 2D grid. An interesting
range-only sensors. These devices can measure the distafatribution of that work is a preliminary robust filtering
to each one of a set of artificial beacons distributed threugi?! Cutliers using a graph cut approach. Once the initial
out the environment, identifying them individually. There€Stimation converges, a standard EKF deals with the SLAM
are two important differences between range-only SLANProblem. A similar scheme is adopted in [3], where the
(RO-SLAM) and the more common range-bearing sLANRUthors also explore the possibility of inter-beacon range
[2]. Firstly, in RO-SLAM we can avoid the problem of
data association since most practical devices used foerang
measurement are able of distinguishing which beacon is

being detected, e.g. Ultra-Wide-Band (UWB) devices [5].
Secondly, the information provided by the measures is kighl
ambiguous: in general, each measurement defines a probabil-
ity density for the potential positions of the sensed beacon
but for a range sensor the non-negligible part of this dgnsit
has an annular shape, since the beacon is within a “ring”
with radius equal to the range measurement. To illustrate ho
ambiguous this information can be, consider the motivating
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measurements to improve map building. dropped since they do not provide additional information.

The contribution of the present work is thus a formulatiorThe factorization in (2) implies the conditional indepence
of probabilistic RO-SLAM under a pure Bayesian viewpointetween the individual beacons, thus their densities aredst
and without any additional non-probabilistic step. Thegesa separately and we can employ the kind of representation that
of a probabilistic framework is motivated by its well-knownis most convenient at each time step without affecting eithe
suitability for effectively fusing information from diffent the robot path or other beacons.
sources. In contrast to many previous works, we apply a Concretely, for each beacon that is observed for the first
Bayesian filter from the beginning, taking advantage of &#ime, we add a new auxiliatyparticle filter (PF) to each
Rao-Blackwellized particle filter (RBPF) [4] to decoupleone of the RBPF samples in order to perform the Bayesian
the estimation of the robot poses and the map. By doingstimation of the new beacon. As described in the next
so, we can freely choose the most convenient distributiagsection, this auxiliary PF will eventually converge froneth
for the beacons at each time step. We derive the equatioimdtial circular shape towards a small Gaussian-like shape
for adding and updating a beacon to the map as a set afid at this moment it will be replaced (without loss of the
weighted samples, and then converting it into a Gaussiastimated uncertainty) by a standard EKF which performs
only when the distribution converges to a single locatiorreliably for reduced uncertainties. The switch into an EKF i
This leads to a consistent probabilistic framework for ROjustified by the particle depletion problem that any staddar
SLAM where beacons are inserted the first time they arenplementation of a PF eventually suffers [13].
observed, independently of whether the map already cantain Next we describe the general procedure to iterate the
well-localized beacons. This follows from the property ofRBPF with each new action and observation from the robot,
conditional independence of the mapped beacons under thbile the details on how to compute some important terms
RBPF approach ([4], [9]). are derived in the following section.

Another advantage of this approach is that we maintain Let the set of\/ samples of the path be referenced:&5s!
the best estimation of each beacon at each time step, died ¢ = 1...M, where each pose, comprises a 2D location
this information is always available to improve the roboplus a heading. These samples have associated importance
localization. In most previous works this information cahn WeightSwtm and are approximately distributed according to
be exploited until the knowledge about the beacon locatiohe path posterior, i.e. the left part of the product in (1).
becomes sulfficiently precise. As it is common in SLAM, we initialize the filter without

any prior knowledge, thus the robot starting location can be
IIl. RBPF-BASED SOLUTION TO RO-SLAM arbitrarily taken as the coordinate origin, that:ig,= 0.

The purpose of a probabilistic approach to RO-SLAM is  For each time step, new particles are drawn using the robot

to obtain the joint probability distribution of the robot$® motion model, which in our case is derived from odometry

(or path) and the map, given all the available data at somgadings, that isxﬁ"] ~ p(xtlwl[f],put)- Next, importance

instant of time. This distribution represents our knowkedgweights are updated as:
about the robot path, the map, and all their correlations. (i i _

Motivated by the strong non-Gaussianity of the distribu- Wy o<W~ P (Zt|ﬂ?t’[1]72t_1> 3)
tions found in RO-SLAM, i.e. a circular-shaped observatio, . i we need a probabilistic observation model, detive
likelihood, we propose to take advantage of the factonzati in the next section. If necessary, the particles may be resam

P (xt7m|zt7ut) =p (xt\zt,ut)p (m|xt’zt7ut) (1) pled to preserve the diversity of the representation. This i
typically performed whenever the effective sample sizésfal
below a given threshold [8]. After updating the estimate of
to separate the representations of the robot pathnd the the robot path, the corresponding conditional distrilngiof
map m. Robot actions and observations are denoted.;as the map must be also updated to account for the new range
and z;, respectively. Note the usage of the supersaripi  readings, as discussed later on.
designate sequences of variables from time stép . Although it is not strictly necessary, in order to simplify

Since we adopt a sample-based representation for the rolee exposition we will assume coplanarity between all the
path, the result is a Rao-Blackwellized particle filter (FBP beacons and also that the robot moves over a 2D surface
where a conditioned distribution of the map is stored fofrom which all the beacons are at a fixed height. Any of
each path hypothesis [4]. An important consequence of thisese restrictions can be straightforwardly removed from
approach for our purposes is that, assuming independernm&r method at the cost of an increase in the computational
between the errors in the measurements, the map dendityrden.
can be further factorized as:

Robot path The map

I1l. | MPLEMENTATION OF THERBPF
D (mlwt7 2, ut) = Hp (mzlxt, th) 2 This section describes the two probabilistic represeoniati
l of beacons in the map (PF and EKF), and how to compute
with them; being the different individual beacon positions in ) . . ) ) )
We denote these filters amuxiliary to avoid confusion with the main

A ) :
the mapm, _andzl be'ng the observations (|e ranges) of th@?BPF. Note that this term is not related at all to thiliary particle filters
corresponding beacons. Note that the actioapnhave been introduced in [12].
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this work we assume for simplicity thafd) = d. Note that
we omit the beacon indekfor clarity in the notation, thus
the symbolm will represent a single beacon, not the whole
map.

Also notice how the observation model in (4) requires a
concrete value for the beacon position) whereas we only
have a distribution of its potential values (recall thatlas t
level there is no uncertainty about the robot path, since the
distributions are conditioned a given path hypothesis). In
other words, the uncertainty in the location of the beacon
becomes uncertainty in the expected range, and thus its
density is given hy:

p(z|zt 247 =

Beacon uncertainty: Small

/P(Zt‘fﬂy],m)p(m|xt*1a[i]’th1)dm
(5)

Observe that the second term within the integral corre-
sponds to the map hypothesis for each RBPF particle. At
this point we can find three different situations depending
on the state of the beacon within tlieh particle:

(a) The beacon is not present in the map. This will happen
whenever a beacon is observed for the first time. In this
case the observation likelihood can be set to any arbitrary
constantp(z|z*,.) = 7, since it will have no effects on
the estimation of the path: there are no previous references
of that beacon that could improve the knowledge about the
robot location.

(b) The beacon is represented by an auxiliary particle filter.
Then the location of the beacon is approximated by a set of
N samplesmnli-*] with weights5l*! for k = 1...N. In this
case the integral in (5) becomes a sum:
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Fig. 2. A comparison of the observation model as computed using

the Monte Carlo (MC) (central column) and the EKF (right colymn
approximations. These two columns represent the obsendét&inood as =
an intensity image over the 2D plane of robot positions, wheighter gray
levels correspond to higher values of the likelihood. Eamh fllustrates a
situation with a different level of uncertainty in the beaclcalization,
represented in the left column. The probability density of theacon
position is depicted in the two forms considered in the test:aaset of
samples, and as a Gaussian, in this case computed to fit the sample N

Taking the MC approximation as the reference, it can be obsenow the — Z ﬁ[i’k]./\/(zt~
EKF approximation performs poorly when the uncertainty in beacon ’
position becomes excessively large, assigning low likelthealues to the
real location of the robot (the origin).
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where the last step (replacing the observation model by
a Gaussian) follows from the definition in (4) since the
observation, conditioned to some known hypotheses of the
the observation model and update the map for each of thogghot pose and the beacon, only conserves the randomness
two forms. owed to the Gaussian noise with variance
A. Observation Model for the Path Estimate . (c) The E)eacon_is already repAresented lby aA Gaussian, that
is, p(m|2zt= b 241 = N(m;iny, Pr), with 7, and P,
We assume that the range sensor provides measuremetifinding for the mean and the covariance matrix, respec-
z corrupted with additive zero-mean Gaussian neiseith  tjyely. Since the Gaussian representation will be used fanly
a variances?, that is: reduced uncertainties in the beacon position, it is acodpta
2 = b (Jze — ml) + v, (4) here to employ a first-order propagation of the uncertainty
from the beacon to the observation
where the functionb(-) can be used to emulate transfor- — N(ala,0?)
mations to the real distance between the sensor and the T
beacon, given byz; — m|. For example, it could be used G o= |op— il @)
to compensate the systematic errorbas of the device. In o? HP,H" + o2

p(zt|xt’[i], thl)



where the matrixH is the Jacobian of the function in (4) the first observation of a beacon is an outlier, our approach

with respect to the beacon coordinates. will fail in correcting its position, thus we assume in this
Up to this point, we have defined how to compute thevork that outliers have been already discarded.

observation likelihood term for the two possible repreaent In subsequent observations of the beacon, these samples

tions of a beacon in the map: a set of Monte Carlo sampleare modified to implement the recursion in (8). It can be

and a Gaussian. To clarify and motivate this distinction, weasily shown that the Bayesian update becomes a change in

show in Fig. 2 some examples for the computation of ththe weights of these samples as:

observation likelihood in three different scenarios, eaok [i,k] (i k] 6 ikl

corresponding to a row in the figure. The left charts depiet th B o By ip(zay”, m™) ©)

real position of the robot and the current knowledge abaitth Note that the rightmost term was already computed in (6),

beacon in the two forms: a set of samples, and the Gaussigfys it does not need to be computed again. Moreover, we
computed to fit the samples. A remarkable observationaye observed that, if the robot is moving, a large part of the
is how both representations lead to a similar observatiqfyicies are quickly assigned negligible weights afteew f
likelihood when the uncertainty is small (first row), while jterations, thus they can be removed from the set to reduce
the output of the Gaussian approximation degenerates as {ig computational cost. In our implementation we drop
the uncertainty becomes larger. For example, in the thind roparticles with weights below0~? times the highest weight.
we have beacon samples distributed alorig@ arc, giving  Thjs simple strategy reduces the computational burden of
a clearly defined peak of the likelihood at the true robof,, method and leads to a practical implementation, as
position. In contrast, the Gaussian approximation assig&monstrated in the experimental results.

higher values to a wide area of the state space but a null oq new observations are fused into the map, the beacon

value to the actual robot pose. This is a clear consequenggimates will eventually converge towards small areabef t

of the mismatch between the actual distribution of the bBaC%(face where most likely the beacons should be found. The

and the fitted Gaussian, as observed in the left-bottom.chaglst \we have applied to check whether a given distribution
B. Map Update should be transformed into a Gaussian is to obtain the

. . 7k]
In this section we address how to initialize and update theovanance matrix computed from all the sampies*] and

. . : en check whether the major axis of the corresponding
densities for each beacon in the map, which correspond 1g. = ~. . L T
T ellipsoid is below a given limit. This is implemented as a
the map part of the factorization in (1).

By applying the Bayes rule and the definition of Ccmdi_threshold for the largest eigenvalue of that covarianceirmat

. o . The threshold value should be selected to be a few times
tional probability, it can be shown that our estimation af th o

. . . smaller than the sensor standard deviation) (n order to
map m given the new data available at each time step (

and z,) is described by: assure the quality of the linearized approximations assume
¢ : for the Gaussian.

S plzem, a2 (8) Finally, the update of the beacon distribution in Gaussian
form is performed through a standard EKF, linearizing over

. I . the range observations.
To follow the evolution of the probabilistic representatio g s

of the beacon, assume that a new beacon is detected at somelV. EXPERIMENTAL RESULTS AND SIMULATIONS
instant of timet (not necessarily at the first time step). In this section we will firstly validate our proposal with

Thﬁn,haccordlng to (?)k ‘?’ﬁ must multiply thﬁ prior beliefo, o rimental results from a real robot equipped with range-
with the observation likelihood, but due to the absence gy, sensors. Next we discuss the results from simulatea dat

any previous knowledge about the beacon it is reasonabledp jomonstrate the possibility of adding new beacons at any

assume an uniform distribution over the whole state SPaG8stant of time. They are also described the typical evofuti
of m. Thus, the first time a beacon is observed (8) reduc

; . ] ~UUCE the RBPF and the differences in the computation burden
to computingp(m|zblil, 2t) = p(z|m, x;") (note howm is

| et between time steps. We encourage to also view the online
the only free variable). Here we initialize the Monte Carlq,;qa for these experiments

representation of the beacon density by drawing samples
ml“*] along the circle centered aﬁl] at any direction in the A. Real robot dataset

whole 360° range and at a distance of plus the additive We have applied the method proposed in this work to a
random noise — refer to Fig. 4(a) for an example. SinCgataset gathered by a real robot while it moves, controlled b
these samples are distributed following exactly the target human, throughout a room traversing an overall path of 30
distribution, we assign them equal initial weights*]. The meters. For this experiment we have installed three “PulsON
number N of particles to generate at this point is a crucialyjira-wide-Band (UWB) devices from TimeDomain as static
parameter of our approach: too few particles may lead {geacons in the walls at a fixed height, in order to enable the
a wrong estimation, while an excessive number increas%éplanarity assumption. The mobile robot is equipped with

the computational burden. We have obtained good results §nfourth device which actively requests the distance to the
different scenarios using the heuristic rile= « - z;, where

« can vary betweer00 and2000. We must remark that, if  2Available in http://www.youtube.com/watch?v=CcW2D4kN3E4

p(m|z’, 2") p(m|xt_1,z

Posterior Prior Sensor model



Fig. 3.
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Experimental results for the real dataset. (a) A smaipsf the environment where the data have been gatheredighishg the location of the

three UWB beacons. (c)—(e) The state of the filter at diffetené steps, with the beacons being labeled as #1, #2, and #&r@bhow all the beacons
have been well-localized before the robot moves one meter fhenbeginning.

TABLE |

maximum detection range of 5 meters has been forced into

Distance | Ground truth| Estimation | Error (%) the simulated sensor to allow the robot to discover new

gi - gg ?{gég m 12-5% m gggf) beacons as it moves. Measurements are also corrupted by
s . m . m 0% . . . .

B2 & B3 6.346 m 6.520 m 2 7% a Gaussian noise with,, = 0.03m. The evolution of the

filter is summarized in Fig. 4(a)—(d) at different time steps
In this case we can compute the absolute errors in the beacon

others in a timely fashion. Refer to Fig. 3(d) for a snapshdPc@lization, which are plotted in Fig. 4(e). All the beason
of the experimental setup. The range information from thE°NVerge to a final error smaller than 0.1 meters.
UWB devices is synchronized to the robot odometry, which We should remark how the beacon labeled as #10 takes

will be used as input to the probabilistic motion model ir? 101g time to converge since it comes out of the detection
the RBPF. range of the robot, but it quickly converges after the robot

In the first iteration of our method, the three beaCongpproaches again (observe the abrupt decrease in the beacon

are initialized as samples distributed in a ring-like Shapgrror in Fig. 4(e) at step 60)' As an example .Of a beac;on
as plotted in Fig. 3(e). It can be seen how these distribatiodded to the map some time after the begln.nmg, consudgr
quickly converge to the most likely positions of the beacondhe beacon #12, gdded at t'm? s.tep.26.. Th|.s beacon .St'"
after 45 iterations the uncertainty in the three beacons hgLesents a clear ring-shaped distribution in Fig. 4(c) evhil

been drastically reduced, as can be observed in Fig. 3(ﬁ5'.05t of the othe_rs he_lve aIrea(_:iy converged._ .
The evolution of the mean value of the 2D coordinates The computation time required by each iteration of our

of each beacon and the associated uncertainties are al SthOd depends on how many beacons are observed and

plotted in Fig. 3(a)—(c), respectively. Note that the map eir representatiqn in the_ RBPF particlgs: for th? sample-
represented in this section are always those ones assbci é‘sed representation th(_e time consumed s proportlonlaétot
to the particle with the highest weight in the RBPF, Whid?umber of samples, while for the Gaussian representation a
in this experiment comprises of 100 samples ixed time is required to update the EKF. In the typical case

These results show that the RBPF obtains an estimate (%;f?several Sa”_‘p'es in the agxiliary parFicIe fiIter; (e.greno
the beacon locations with the uncertainty decreasing as nff nGl 00), 'thelr update :eguwezmore t|me. thant;]n the Cise Off
measures are considered, but it should be also verified t QF aussian representation. HOWEVET, since the number o
the different distributions converge to the actual loaadio samples in th_e distribution Of_ the beacons can decre_ase with
of the beacons. However, in practice it is difficult to obtain €W observations (recall section IlI-B), the time consuorpt

reliable measurements of the absolute beacon coordinat @oothly decreases from a maximum (after inserting new

Alternatively, we have measured the relative distances b eacons in the map) to the point when the auxiliary particle

tween the beacons, which are compared in Table | to t %ger IS ;e.pliﬁw by r‘;’m FI.EK'Z Th|sf pattern can be clearly
corresponding values for the final estimate of our method.0P=€rVed In the grapns Fig. ORUE
V. CONCLUSIONS

In this work we have analyzed the specific hurdles found
We also present the results of our method for a simulated SLAM based solely on range measurements, as opposed
dataset with the purpose of demonstrating the ability ab the more common case of range and bearing SLAM. We
incorporating new beacons at arbitrary instants of timeéhave maintained that a pure probabilistic, Bayesian smiuti
and to show how the computational burden varies as thie more desirable than other batch processing techniques
probabilistic representations of the beacons change withdue to its capability of consistently fusing informatiomrin
the filter. different observations taking into account the associated
For this experiment we have simulated range readings fancertainty. A solution based on a RBPF has been proposed
15 static beacons as the robot describes a circular path.dde to its ability for keeping the conditional distributgon

B. Simulated Data
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Experimental results for the simulated dataset. §a)Four snapshots of the state of the RBPF at different timgsstehere the beacons are

labeled as #0,...#14. It can be appreciated the “ring” studighe distribution for all the beacons initialized at thesfiiteration, which quickly converge
towards the true beacon positions. () The errors from thenrasimate of each beacon and the ground truth. (f) The coniputiéine at each time step.

separately, which is a great advantage in RO-SLAM since wgs] J. Ferrandez-Madrigal, E. Cruz-Martin, J. Gonzalez, C. Galindo,
can then initialize the distribution of the beacons as aaryil

PFs and convert them into EKFs when this becomes a
better choice. As demonstrated with experimental resuilts,
method has a high computational burden in the first iteration 6]
after the addition of new beacons, but it quickly becomes
more efficient as the auxiliary particles are removed. As[7]
a result, we have an average execution time below 0.1s
per iteration in some cases, rendering our method capable
of online execution. Future research will address furthers)
improvements in efficiency and a more realistic management

of outliers.
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