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Abstract— The lack of a parameterized observation model
in robot localization using occupancy grids requires the ap-
plication of sampling-based methods, or particle filters. This
work addresses the problem of optimal Bayesian filtering
for dynamic systems with observation models that cannot
be approximated properly as any parameterized distribution,
which includes localization and SLAM with occupancy grids.
By integrating ideas from previous works on adaptive sample
size, auxiliary particle filters, and rejection sampling, we derive
a new particle filter algorithm that enables the usage of the
optimal proposal distribution to estimate the true posterior
density of a non-parametric dynamic system. Our solution
avoids approximations adopted in previous approaches at the
cost of a higher computational burden. We present simulations
and experimental results for a real robot showing the suitability
of the method for localization.

I. I NTRODUCTION

Two prominent applications of Bayesian sequential esti-
mation have received a huge attention in robotics research,
namely localization and simultaneous localization and map
building (SLAM) [22], [23]. The former consists of esti-
mating the pose of a mobile robot within a known environ-
ment, whereas in SLAM the map is also estimated while
performing self-localization. In both problems the choice
for the representation of the environment determines the
probabilistic estimation method that can be applied. In the
case of landmarks, the map can be modeled by multivariate
Gaussian distributions with Gaussian observation models,
obtained by solving the problem of association [3], [4].
Thus, SLAM with landmark maps can be approached well
through Gaussian filters such as the EKF [12]. However,
these methods are not applicable to other types of map rep-
resentations, as occupancy grid-maps [17], forcing a sample-
based representation of the joint probability density. In this
case, sequential estimation is carried-out by Monte-Carlo
simulations, orparticle filters [5].

In this paper we focus on the problem of localization
using occupancy grids, although the proposed method can be
also applied to other representations, e.g. topological maps.
Some advantages of occupancy grids are the precise dense
information they provide and the direct relation of the map
with the sensory data, which avoids the problem of data
association. Their main drawback is that the probabilistic
observation model for grid maps can be evaluated only
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pointwise and lacks a parametric form ([23] is a good refer-
ence for the problem of providing approximate observation
models for grids), in contrast to analytical models available
for landmark maps [3], [4]. Standard particle filter algorithms
like the Sequential Importance Sampling (SIS) filter [20] and
the SIS with resampling (SIR) filter [10], [21] allow us to
perform sequential filtering provided only the ability to draw
samples according to the system transition model (the robot
motion model) and to pointwise evaluate the observation
model. However, the efficiency of these algorithms is greatly
compromised by peaky sensor models and outliers, which
make most of the particles to be discarded in a resampling
step and lead toparticle impoverishmentor even to the
divergence of the filter. For mobile robots this issue typically
arises in robots equipped with low-noise sensors such as laser
range finders.

A theoretical solution that enables the efficient represen-
tation of probability densities through perfectly distributed
particles was proposed by Doucetet al. [7], consisting of an
optimal proposal distribution from which to draw samples at
each time step. However, a direct application of this approach
requires an observation model with a parametric distribution
from which to draw random samples (as in [15]), whereas
for grid maps we can evaluate it only pointwise [23].

The contribution of this work is a new particle filter
algorithm that, given the same requirements as the original
SIS and SIR algorithms, dynamically generates the minimum
number of particles that best represent the true distribution
within a given bounded error, thus providingoptimal sam-
pling. We claim our method is optimal in this sense, in the
draw of new samples according to the theoretic proposal
distribution. Naturally, no particle filter without parametric
models can perform optimal filtering due the approximate
nature of Monte-Carlo methods.

Our method is grounded on previous works related to
optimal sampling [6], [7], auxiliary particle filters (APF)
[19], rejection sampling [14], and adaptive sample size
for robot localization [8]. In the context of mobile robots,
the proposed algorithm represents an important contribution
since no Gaussian approximations are assumed while gen-
erating new particles, which is the case of previous works
[11], [15]. Moreover, our method is based on the formulation
of a general particle filter, thus it does not depend on the
reliability of scan matching as previous works and can be
applied to a wider variety of problems.

The rest of this paper is structured as follows. In section
II we review previous particle filter algorithms used in
robotics and highlight the differences with our proposal,
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which is introduced in section III. We provide simulations
and experimental results with real data in section IV, and
finally we remark some conclusions.

II. RELATED RESEARCH

In this section we briefly review the applications of particle
filters to robot localization and SLAM. A more compre-
hensive review of particle filter techniques can be found
elsewhere [1], [5].

The probabilistic approach to localization and SLAM
includes the estimation of the posterior distribution of the
robot poses up to the current instant of time given the whole
history of available data. In the case of localization (the focus
of this work), letxt denote the robot pose at time stept and
zt andut represent the sequences of observations and actions
up to t, respectively. Then, the posterior of the robot pose
can be computed sequentially by applying the Bayes rule:

p(xt|z
t, ut) ∝

Observation likelihood
︷ ︸︸ ︷

p(zt|xt)

Prior
︷ ︸︸ ︷

p(xt|z
t−1, ut) (1)

Under the assumptions of linearity and Gaussianity, the
Kalman filter [13] represents a closed-form, optimal solution
to (1). Some improvements have been proposed to overcome
the assumption of linearity, where the most widely known is
the Extended Kalman Filter (EKF) [12]. The EKF approach
to localization and SLAM has been the predominant one for
several years [4], but the limitations of this Gaussian filter led
to the popularization of particle filters for global localization
[9], and, more recently, also for mapping [11], [16].

As opposed to parametric probability distributions, the
distributions estimated by a particle filter are represented by
a finite set of hypotheses, orparticles, which are weighted
according to importance sampling. The simplest particle
filter algorithm is the SIS filter [20], described next in the
context of localization. Let{x[i]

t }Mt

i=1 denote a set of robot
pose hypotheses for the time stept, approximately distributed
according to the posterior, that is,x[i]

t ∼ p(xt|z
t, ut) for

i = 1, ...,Mt. Most previous particle filter techniques rely
on Mt representing a constant number of particles for all
time stepst (an exception in the work by Fox in [8]).

In general, the particles will be not distributed exactly
according to the true posterior, hence they are assigned
importance weightsω[i]

t to obtain an unbiased estimation
of the density. The SIS algorithm consists of simulating
the Bayes update in (1) by drawing samples for the new
robot pose from someproposal distribution, that is,x[i]

t ∼

q(xt|x
[i]
t−1, z

t, ut), and then updating the weights by [6]:

ω
[i]
t ∝ ω

[i]
t−1

p(zt|xt, x
t−1,[i], zt−1, ut)p(xt|x

[i]
t−1, ut)

q(xt|xt−1,[i], zt, ut)
(2)

The simplest choice for the proposal distributionq(·) is
the robot motion model – theprior in (1). In this paper we
will refer to this choice as thestandard proposal. In this
case, widely employed in robotics [8], [9], [16], the weight
update in (2) simplifies to the product of the previous weights

TABLE I

BAYESIAN FILTERING ALGORITHMS THAT HAVE BEEN APPLIED TO

LOCALIZATION AND SLAM

Proposal
distribution

System models Algorithms

–
Linear

Gaussian
Kalman Filter [13]

–
Non-Linear
Gaussian

EKF [12], UKF [24]

Standard
Non-Linear

Non-Gaussian

SIR [10],
APF [19], RBPF [18],

FastSLAM [16]

Optimal
Non-Linear
Gaussian

FastSLAM 2.0 [15],
Grisetti et al. [11]

Optimal
Non-Linear

Non-Gaussian
This work

with the evaluation, at each particle, of the observation model
p(zt|x

t,[i], zt−1, ut). Note how the SIS filter requires only the
ability of drawing samples from the robot motion model and
evaluating the observation likelihood pointwise. In spiteof its
simplicity, the SIS filter is not a practical solution, sinceit has
been demonstrated that the variance of the weights increases
over time [6], which eventually leads to the degeneracy of the
filter. This is the reason for the introduction of the SIS with
resampling (SIR) algorithm [10], where a resampling step
replaces those particles with low weights by copies of more
likely particles. For the case of SLAM, Rao-Blackwellized
Particle Filters (RBPF) are a practical solution [18] that
has been applied to landmark maps (FastSLAM [16]) and
occupancy grids [11].

However, the efficiency of all the above particle filter al-
gorithms is strongly influenced by the choice of the proposal
distribution q(·): the larger the mismatch between the pro-
posal and the observation likelihood, the more particles are
wasted in non-relevant areas of the state space. In particular,
this is the case of mobile robots equipped with accurate
sensors like laser scanners [11]. This is partly overcome
with the Auxiliary Particle Filter (APF) [19], through a one-
step look ahead resampling. In general, an APF reduces
the number of wasted particles, but it is still a sub-optimal
solution since particles are propagated using the standard
proposal distribution.

It has been demonstrated by Doucetet al. [7] that the
variance of the particle weights is minimized by choosing
an optimal proposal distribution, which incorporates the
information of the most recent observation while propagating
particles. It has been applied to landmark maps (FastSLAM
2.0 [15]), but it is not directly applicable to map representa-
tions without parametric observation models, like occupancy
grids.

Recent work by Grisettiet al. [11] overcomes this by
approximating the sensor model with a Gaussian whose mean
value is obtained by scan matching over the grid map. This
approximation has demonstrated its practical utility allowing
the efficient mapping of large environments. However, the
observation likelihood may not be appropriately approxi-
mated by a Gaussian in many situations, thus the posterior



{ }
1

[ ]

1 1... t

i

t i M
x

−
−

=

[1] [2]

{ }[ , ] [ , ]

1 1 1...
,i j i j

t t
j N

x ω
− −

=

[1,1] [1,N] [2,1] [2,N]

…

… …

[Mt-1]

[Mt-1,1] [Mt-1,N]

…

… … …

…

{ }[ ]

1... t

k

t
k M

x
=

…

[1] [2] [Mt]
…

Auxiliary particles

Particles for time step t–1:

Particles for time step t:

Group 1 Group 2 Group Mt-1

…

Duplication

Rejection sampling 

and weight update

Adaptive

resampling

… …

{ }[ , ] [ , ]

1...
,i j i j

t t
j N

x ω
=

[3]

Fig. 1. The theoretic model of our optimal particle filter. An initial set of Mt−1 particles is first replicated into a set of auxiliary particles, which are
then propagated according to the optimal proposal distribution (simulated by rejection sampling). Then, a resampling stage (with an adaptive sample size)
chooses the final set ofMt samples from the updated auxiliary particles, taking each one of them with a probability proportional to its weight. As a result,
all the final particles have equal importance weights (omittedin the graph by this reason).

distribution would be severely distorted. Even in those cases
where the observation likelihood could resemble a Gaussian,
it can not be proven that the mean of the real posterior
coincides with the result of scan matching. Actually, there
are some practical situations where scan matching techniques
fail. It has been proposed to discard the information of
the corresponding observations [11], but observe that even
in those cases we could obtain a more precise posterior
by integrating all the available information, which is lost
otherwise, and which would provide valuable information
when facing ambiguous sensor measurements.

To summarize the above discussion we have represented
the previous methods in Table I, where our method also
appears for comparison.

III. T HE OPTIMAL PARTICLE FILTER

A. Preliminary definitions

It has been shown that the optimal proposal distribution
that minimizes the variance of the next weights for any
generic particle filter is given by [7]:

x
[i]
t ∼ q(xt|x

t−1,[i], zt, ut) = p(xt|x
t−1,[i], zt, ut) (3)

=
p(zt|xt, x

t−1,[i], zt−1, ut)p(xt|x
t−1,[i], zt−1, ut)

p(zt|xt−1,[i], zt−1, ut)

For mobile robots this proposal requires drawing samples
from the product of the transition (robot motion) and ob-
servation models, which are the terms that appear in the
numerator of (3), respectively. Since the system state for the
last time step (xt) does not appear in the denominator, it is
a valueµi, however different for each particlei. Therefore,
to draw samples from the optimal proposal is equivalent to
draw:

x
[i]
t ∼

Observation model
︷ ︸︸ ︷

p(zt|xt, x
t−1,[i], zt−1, ut)

Transition model
︷ ︸︸ ︷

p(xt|x
t−1,[i], zt−1, ut)

µi

(4)

By replacing this optimal proposal in the general equation
for the weight update in a SIS filter, in (2), we obtain:

ω
[i]
t ∝ ω

[i]
t−1p(zt|x

t−1,[i], zt−1, ut) (5)

At this point, we state that the purpose of our optimal par-
ticle filter algorithm is to generate samples exactly distributed
according to the density in (3), while dynamically adapting
the number of samples to assure a good representation of the
true posterior at each moment.

To avoid the problem of particle depletion we have found
two different approaches in other works. The first one is
to resample particles at every time step as required to
assure that they represent well the true posterior. Another
solution consists of resampling only when a measure of the
representativeness of the samples is below a given threshold
[21]. We will employ the first approach for the derivation
of our optimal algorithm. As discussed later on, this generic
optimal filter fits perfectly to the problem of mobile robot
localization. A variation using selective resampling can be
devised for SLAM, but this will be not addressed here due
to space limitation.

B. Derivation of the optimal filter algorithm

In the following we derive the algorithm for generating
a dynamically-sized set of samples according to the exact
posterior being estimated. To clarify the exposition we have
summarized the process graphically in Fig. 1.

We start by assuming that a set ofMt−1 particlesx
[i]
t−1

is available which areexactly distributed according to the
posterior of our system for the time stept − 1, that is:

x
[i]
t−1 ∼ p(xt−1|z

t−1, ut−1) (6)

Since these samples are optimally distributed, all of them
will have equal importance weights, and so they can be
omitted. The assumption of perfectly distributed particles
for the previous time step is not a problem but for the first



iteration of the filter. Typical assumptions for the initialbelief
include uniform or Gaussian distributions, depending on the
available information and the specific problem.

Now we introduce a set of auxiliary particles̃x[i,j]
t−1 with

associated importance weightsω̃
[i,j]
t−1 , such that̃x[i,j]

t−1 = x
[i]
t−1

for j = 1, ..., N and ω̃
[i,j]
t−1 = 1/ (NMt−1). That is, we

replicateN times each particlex[i]
t−1, assigning equal weights

to all of them. Notice that this process does not modify the
sample-based estimation of the posterior, since each particle
i is replicated the same number of times. We will use these
auxiliary particles just as a computation artifact: in practice
only a few of them need to be generated, as will become
clear below. Therefore, the valueN is left undefined here,
although it is convenient to think of it as a large value, ideally
the infinity.

The auxiliary particles are propagated according to the
optimal proposal, in (4), in order to obtain a large amount
(ideally infinity) of optimally distributed particles̃x[i,j]

t ,
from which we will finally keep only the required ones
for providing a good representation of the posterior. This
is achieved by generating the new set of particlesx

[k]
t by

resampling the set of auxiliary samplesx̃
[i,j]
t .

The key point that allows us to directly generate the
optimally distributed particles without computing all the
auxiliary ones is that all the auxiliary particles̃x[i,j]

t coming
from a given particlex[i]

t−1 will have equal weights. This
property follows from the fact that the concrete value of the
particle at time stept does not appear in the computation
of the new weights, as described by (5). These groups of
equally-weighted samples are sketched in Fig. 1.

Thus, the optimal particlesx[k]
t are generated by resam-

pling the auxiliary set at time stept. Similarly to auxiliary
particle filters [19], we perform this by drawing indexesi
of particles for the previous time step, in our case with a
probability proportional to the weights̃ω[i,j]

t , which are given
by:

ω̃
[i,j]
t = ω̃

[i,j]
t−1p(zt|x

t−1,[i], zt−1, ut) (7)

Here the a priori likelihood of the observationzt can be
expanded using the law of total probability:

p(zt|x
t−1,[i], zt−1, ut) = (8)

∫

p(xt|x
[i]
t−1, ut)p(zt|xt, x

t−1,[i], zt−1)dxt

The terms that appear inside the integral above are the
system transition and observation models, respectively. Since
we are assuming in this work that we can only draw samples
from the system transition model and evaluate pointwise
the observation model, a Monte-Carlo approximation of the
integral p̂(zt|·) ≈ p(zt|·) can be obtained by means of:

p̂(zt|x
t−1,[i], zt−1, ut) =

1

B

B∑

n=1

p(zt|x
[n]
t , xt−1,[i], zt−1) (9)

TABLE II

THE OPTIMAL PARTICLE FILTER ALGORITHM

algorithm OptimalParticleFilter :{x[i]
t−1}

Nt−1

i=1 7→ {x
[k]
t }Nt

j=1

1. For each particlex[i]
t−1

1.1. Generate a set ofB samplesx[n]
t ∼ p(xt|x

[i]
t−1, ut).

1.2. Use them to computêp(zt|·) and p̂max(zt|·).
2. GenerateNt particles, withNt determined by KLD-sampling [8].

2.1. Draw an indexi with probability given by weights in (7).
2.2. Generate a new sample by rejection sampling:

2.2.1. Draw a candidate samplex[k]
t ∼ p(xt|x

[i]
t−1, ut).

2.2.2. Compute∆ through (10).
2.2.3. With a probability of1 − ∆, go back to 2.2.1.

with the B samplesx[n]
t generated according to the system

transition model, e.g. the robot motion model for localization
and SLAM. The numberB is a parameter of our algorithm,
and will be typically in the range 10 to 200 depending on
the specific problem addressed by the filter.

Going back to the resampling of the auxiliary particles,
for each drawn indexi we generate a new optimal particle
by taking the value ofany auxiliary particle in thei’th
group, since all of them have equal probability of being
selected in the resampling. That is, the new optimal particle
x

[k]
t is a copy of x̃[i,j]

t , where the value ofj is irrelevant.
The importance weights of the final particles given by
our algorithm can be ignored, since particles obtained by
resampling all have exactly the same weights.

We need to provide a method to compute the concrete
value of the auxiliary particles̃x[i,j]

t for some certain value
of i. We employ here the rejection sampling technique to
draw from the product of the transition and observation
densities – refer to (4). Basically, this technique consists
of generating samplesx[k]

t following one of the terms of
the product (the transition model), and accepting the sample
with a probability ∆ proportional to the other term (the
observation model) [14]:

∆ =
p(zt|x

[k]
t , xt−1,[i], zt−1, ut)

p̂max(zt|xt, xt−1,[i], zt−1, ut)
(10)

We must remark that this technique has a random exe-
cution time. The only quantity required to evaluate (10) is
the maximum value of the observation modelp̂max(zt|·),
which can be estimated simultaneously to the Monte-Carlo
approximation in (9) for the same set of samplesx

[n]
t , thus

it does not imply further computational cost.
Up to this point we have shown how to generate one

particle according to the true posterior given the set of
particles for the previous time step. The above method can
be repeated an arbitrary number of times to generate the
required number of particlesMt for the new time stept. To
determine this dynamic sample size we propose to integrate
here the method introduced by Fox in [8]. There it is used
the concept of Kullback-Leibler distance (KLD) [2] to derive
an expression for the minimum number of particlesNt such
as the KLD between the estimated and the real distributions
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Fig. 2. A comparison of our method to other two particle filters for a linear, Gaussian system. The top row shows the particles and weights obtained
for each algorithm. Below the weighted histograms of the samples is compared to the exact Gaussian density. This similarity ismeasured in the third row
with the Kullback-Leibler distance between the real and theestimated distributions for different sample sizes. Observehow our method achieves a lower
distance (a higher similarity) even for a few particles.

is kept below a certain thresholdǫ with a probability1 − δ.
Please, refer to [8] for further details.

To summarize the introduction of our algorithm we present
an algorithmic description of the overall method in Table II.

IV. EXPERIMENTAL RESULTS

In this section we will first present simultations for com-
paring our filtering algorithm to others, and next we will
show experiments where our approach is applied to robot
localization (position tracking).

A. Simulations

We have considered here a one-dimensional linear system
with Gaussian transition and observation models. Such a
simple system allow us to contrast the output of the different
filters with the analytical solution from a Kalman filter (KF)
which provides us the exact posterior. The situation being
simulated is that of an observation model much more peaked
than the prior distribution obtained from the system transition
model, a situation similar in mobile robotics to a poor motion
model (such as odometry) and a very precise sensor (such
as a laser scanner). The top graphs of Fig. 2 represent the
location and weights of the obtained particles with three
different algorithms: a SIR filter with a standard proposal
distribution [21], an auxiliary particle filter (APF) [19],and
our method. We can observe how the standard proposal leads
to most of the particles being wasted in non relevant areas
with negligible importance weights. The APF introduces a
great improvement in this sense, since particles are more
concentrated in the area of interest. However, the weights
still contain a certain variance. In contrast, our optimal
algorithm generates particles distributed exactly according
to the true posterior, thus they all have the same weights.
To measure the accuracy of each particle filter we have
reconstructed the estimated densities by means of weighted
histograms, shown in the middle row of Fig. 2 along with the
analytical solution from the KF. To evaluate each algorithm,
we have computed the KLD between the analytical and the
estimated distributions for a range of sample sizes (we have
disabled here the capability of automatically determiningthe

sample size in our method for comparison purposes with the
others). The average KLD for 1000 realizations, shown in
the bottom row of Fig. 2, confirms that our approach gives
estimations closer to the actual posterior (with less particles)
than previous methods.

B. Localization

The following experiments consist of tracking the pose of
a mobile robot equipped with a laser range finder while it is
manually guided through an office environment. Concretely,
the path and the (already built) map of the environment are
shown in Fig. 3(a). The purpose of the first experiment is to
compare the accuracy in the localization between our optimal
sampling mechanism and the standard proposal distribution.
The resolution of the grid is 0.04m, and the non-parametric
observation model is the likelihood field described in [23].

The accuracy has been calculated by averaging the local-
ization errors of all the particles at each time step, and using
as the ground truth the robot poses estimated while the map
was first built. Significant results are obtained by averaging
over 100 executions for each sample size. The capability of
adapting the sample size in our algorithm has been disabled
in this first experiment to provide a fair comparison to
a standard PF. The most interesting conclusion from the
results, in Fig. 3(b), is that our optimal PF has an excellent
performance starting from just one particle (an average error
of roughly 0.10m), whereas the standard proposal needs
about 10 particles or more to avoid the filter to diverge (e.g.
the average error of 6m for one particle means the filter has
lost track of the localization).

On the other hand, our method requires more computation
time than the standard approach. For example, for 100
particles, ours takes 50.56s for the whole experiment while
the standard PF takes 9.91s only. Thus, one could argue that
a standard PF with more particles would achieve a similar
accuracy than our optimal PF for the same computation time.
Actually, we can see in the graphs that our method always
achieves a better accuracy than the standard approach, even
with much fewer particles and a similar computation time.
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Fig. 3. Results for localization experiments. (a) The map usedfor the
experiment and the robot path. (b) The average positioning error using the
standard proposal and our optimal algorithm, both for different sample sizes
(results averaged over 100 repetitions). Observe how our method performs
well even for just one particle. (c) The number of particles for our method
(determined automatically), starting in a situation of global localization with
10000 particles distributed uniformly.

A second localization experiment has been carried out
where the adaptive sample size capability of our algorithm
is enabled. In this case, we start in the situation of global lo-
calization (initially there are 10000 particles distributed uni-
formly over the whole environment). As shown in Fig. 3(c),
the sample size drastically falls in the first few iterationsto
the range of 20-30 particles, and it remains approximately
fixed along the whole experiment. This is because there
are no situations where the sensors become particularly
ambiguous.

V. CONCLUSIONS

In this paper we have identified a problem, localization
with grid maps, where a particle filter is required but the
lack of a closed-form observation model prevent the direct
application of the optimal proposal distribution. We have
derived a new algorithm that allows a particle filter to exploit
this optimal proposals even for non-parametrical models. We
have shown how the method focuses the samples in the
relevant areas of the state space better than previous particle
filter algorithms in simulated experiments, as well as the
suitability to real robot localization.

Additional work will be required to explore the interesting
applications of this method to SLAM, where a dynamic
number of optimally distributed particles will improve recent
works on RBPF-based grid mapping.
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