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Abstract—The lack of a parameterized observation model
in robot localization using occupancy grids requires the ap-
plication of sampling-based methods, or particle filters. This
work addresses the problem of optimal Bayesian filtering
for dynamic systems with observation models that cannot
be approximated properly as any parameterized distribution,
which includes localization and SLAM with occupancy grids.
By integrating ideas from previous works on adaptive sample
size, auxiliary particle filters, and rejection sampling, we derive
a new particle filter algorithm that enables the usage of the
optimal proposal distribution to estimate the true posterior
density of a non-parametric dynamic system. Our solution
avoids approximations adopted in previous approaches at the
cost of a higher computational burden. We present simulations
and experimental results for a real robot showing the suitability
of the method for localization.

I. INTRODUCTION

pointwise and lacks a parametric form ([23] is a good refer-
ence for the problem of providing approximate observation
models for grids), in contrast to analytical models avddab
for landmark maps [3], [4]. Standard particle filter algbnits

like the Sequential Importance Sampling (SIS) filter [20f an
the SIS with resampling (SIR) filter [10], [21] allow us to
perform sequential filtering provided only the ability tcadr
samples according to the system transition model (the robot
motion model) and to pointwise evaluate the observation
model. However, the efficiency of these algorithms is gyeatl
compromised by peaky sensor models and outliers, which
make most of the particles to be discarded in a resampling
step and lead tgarticle impoverishmenbr even to the
divergence of the filter. For mobile robots this issue tyihjca
arises in robots equipped with low-noise sensors such as las
range finders.

Two prominent applications of Bayesian sequential esti- A theoretical solution that enables the efficient represen-
mation have received a huge attention in robotics researdhtion of probability densities through perfectly distribd
namely localization and simultaneous localization and maparticles was proposed by Dougstal. [7], consisting of an

building (SLAM) [22], [23]. The former consists of esti-

optimal proposal distribution from which to draw samples at

mating the pose of a mobile robot within a known environeach time step. However, a direct application of this apgroa
ment, whereas in SLAM the map is also estimated whileequires an observation model with a parametric distrilouti
performing self-localization. In both problems the choicdrom which to draw random samples (as in [15]), whereas
for the representation of the environment determines tHer grid maps we can evaluate it only pointwise [23].
probabilistic estimation method that can be applied. In the The contribution of this work is a new particle filter
case of landmarks, the map can be modeled by multivariagdgorithm that, given the same requirements as the original
Gaussian distributions with Gaussian observation modelS)S and SIR algorithms, dynamically generates the minimum
obtained by solving the problem of association [3], [4]number of particles that best represent the true distghuti
Thus, SLAM with landmark maps can be approached weWithin a given bounded error, thus providirgtimal sam-
through Gaussian filters such as the EKF [12]. Howevepling. We claim our method is optimal in this sense, in the
these methods are not applicable to other types of map refraw of new samples according to the theoretic proposal
resentations, as occupancy grid-maps [17], forcing a ssampMdistribution. Naturally, no particle filter without paratrie

based representation of the joint probability density.His t

models can perform optimal filtering due the approximate

case, sequential estimation is carried-out by Monte-Carlvature of Monte-Carlo methods.

simulations, orparticle filters[5].

Our method is grounded on previous works related to

In this paper we focus on the problem of localizatioroptimal sampling [6], [7], auxiliary particle filters (APF)
using occupancy grids, although the proposed method can B&], rejection sampling [14], and adaptive sample size

May. 2008.

also applied to other representations, e.g. topologicaisma for robot localization [8]. In the context of mobile robots,
Some advantages of occupancy grids are the precise deti3@ proposed algorithm represents an important contdbuti
information they provide and the direct relation of the magince no Gaussian approximations are assumed while gen-
with the sensory data, which avoids the problem of dat@rating new particles, which is the case of previous works
association. Their main drawback is that the probabilistil1], [15]. Moreover, our method is based on the formulation
observation model for grid maps can be evaluated on§f a general particle filter, thus it does not depend on the
reliability of scan matching as previous works and can be
This work was supported by the Spanish Government under ratsea applied to a wider variety of problems.
contract DP|2005-01391 and the FPU grand program. ___ The rest of this paper is structured as follows. In section
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TABLE |
BAYESIAN FILTERING ALGORITHMS THAT HAVE BEEN APPLIED TO
LOCALIZATION AND SLAM

which is introduced in section Ill. We provide simulations
and experimental results with real data in section IV, and
finally we remark some conclusions.

Il. RELATED RESEARCH di:ﬁgstsigr'] System models Algorithms

In this section we briefly review the applications of pasicl B Linear Kalman Filter [13]
filters to robot localization and SLAM. A more compre- Gaussian
hensive review of particle filter techniques can be found - Nég;é';if EKF [12], UKF [24]
elsewhere [1], [5]. : SIR[10],

The probabilistic approach to localization and SLAM Standard Non-Linear APF [19], RBPF [18],
includes the estimation of the posterior distribution o th Non-Gaussian FastSLAM [16]
robot poses up to the current instant of time given the whole Non-Linear FastSLAM 2.0 [15],
history of available data. In the case of localization (theufs Gaussian Grisettiet al. [11]
of this work), letz, denote the robot pose at time stepnd Optimal Nﬁf]”e'gﬂzggn This work
2% andu?® represent the sequences of observations and actions

up to t, respectively. Then, the posterior of the robot pose
can be computed sequentially by applying the Bayes ruleyity the evaluation, at each particle, of the observatiodeho
p(z]2zb, 241 ut). Note how the SIS filter requires only the
Observation likelihood Prior ability of drawing samples from the robot motion model and
plaelzt ul) o« plaelme)  plag]zt™h ul) 1) e.valugt.mg the obsefrvat.|on Ilkellhood_ pointwise. In §!mtets
) ) ) o simplicity, the SIS filter is not a practical solution, sirithas
Under the assumptions of linearity and Gaussianity, thgeen demonstrated that the variance of the weights in@ease
Kalman filter [13] represents a closed-form, optimal sainti oyer time [6], which eventually leads to the degeneracy ef th
to (1). Some improvements have been proposed to Overcoiiger, This is the reason for the introduction of the SIS with
the assumption of linearity, where the most widely known i$esampling (SIR) algorithm [10], where a resampling step
the Extended Kalman Filter (EKF) [12]. The EKF approachepiaces those particles with low weights by copies of more
to localization and SLAM has been the predominant one fqjkely particles. For the case of SLAM, Rao-Blackwellized
several years [4], but the limitations of this Gaussianriléel  particle Filters (RBPF) are a practical solution [18] that
to the popularization of particle filters for global localtion a5 peen applied to landmark maps (FastSLAM [16]) and
[9], and, more recently, also for mapping [11], [16]. occupancy grids [11].
As opposed to parametric probability distributions, the However, the efficiency of all the above particle filter al-
distributions estimated by a particle filter are represgiie  gorithms is strongly influenced by the choice of the proposal
a finite set of hypotheses, garticles which are weighted gistribution ¢(-): the larger the mismatch between the pro-
according toimportance samplingThe simplest particle posal and the observation likelihood, the more particles ar
filter algorithm is the SIS filter [20], described next in theyasted in non-relevant areas of the state space. In panjcul
context of localization. Le{z;"} denote a set of robot this is the case of mobile robots equipped with accurate
pose hypotheses for the time steppproximately distributed sensors like laser scanners [11]. This is partly overcome
according to the posterior, that is)”! ~ p(z|-',u) for  with the Auxiliary Particle Filter (APF) [19], through a one
i = 1,..., M;. Most previous particle filter techniques relystep look ahead resampling. In general, an APF reduces
on M; representing a constant number of particles for athe number of wasted particles, but it is still a sub-optimal
time stepst (an exception in the work by Fox in [8]). solution since particles are propagated using the standard
In general, the particles will be not distributed exactlyproposal distribution.
according to the true posterior, hence they are assignedit has been demonstrated by Douestal. [7] that the
importance Weightﬁut[q’] to obtain an unbiased estimationvariance of the particle weights is minimized by choosing
of the density. The SIS algorithm consists of simulatingin optimal proposal distribution which incorporates the
the Bayes update in (1) by drawing samples for the newformation of the most recent observation while propagati
robot pose from someroposal distribution that is,xk] ~  particles. It has been applied to landmark maps (FastSLAM
q(xt|x£’]_1, 2t ut), and then updating the weights by [6]: 2.0 [15]), but it is not directly applicable to map represent
tions without parametric observation models, like occugan
grids.

(2) Recent work by Grisettiet al. [L1] overcomes this by
approximating the sensor model with a Gaussian whose mean

The simplest choice for the proposal distributigh) is value is obtained by scan matching over the grid map. This
the robot motion model — thprior in (1). In this paper we approximation has demonstrated its practical utilityaifay
will refer to this choice as thetandard proposalln this the efficient mapping of large environments. However, the
case, widely employed in robotics [8], [9], [16], the weightobservation likelihood may not be appropriately approxi-
update in (2) simplifies to the product of the previous wesghtmated by a Gaussian in many situations, thus the posterior

i o i Pl a7 S apa e w)
t t—1 q(xtlmt—l,[i]7zt7ut)
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Fig. 1. The theoretic model of our optimal particle filter. Anitigl set of M;_; particles is first replicated into a set of auxiliary pae| which are
then propagated according to the optimal proposal distabusimulated by rejection sampling). Then, a resamplinges{agth an adaptive sample size)
chooses the final set dff; samples from the updated auxiliary patrticles, taking ea@hairthem with a probability proportional to its weight. Asesult,
all the final particles have equal importance weights (omittethe graph by this reason).

distribution would be severely distorted. Even in thoseesas By replacing this optimal proposal in the general equation

where the observation likelihood could resemble a Gaussidior the weight update in a SIS filter, in (2), we obtain:

it can not be proven that the mean of the real posterior

coincides with the result of scan matching. Actually, there (4] (4] t—1[] =1 ot 5

are some practical situations where scan matching tecasiqu wit 0wy p(arle 2w )

fail. It has been proposed to discard the information of At this point, we state that the purpose of our optimal par-

the corresponding observations [11], but observe that evéiole filter algorithm is to generate samples exactly distied

in those cases we could obtain a more precise posteriatcording to the density in (3), while dynamically adapting

by integrating all the available information, which is lostthe number of samples to assure a good representation of the

otherwise, and which would provide valuable informationtrue posterior at each moment.

when facing ambiguous sensor measurements. To avoid the problem of particle depletion we have found
To summarize the above discussion we have representgeb different approaches in other works. The first one is

the previous methods in Table |, where our method als@w resample particles at every time step as required to

appears for comparison. assure that they represent well the true posterior. Another

solution consists of resampling only when a measure of the

representativeness of the samples is below a given thaeshol

A. Preliminary definitions [21]. We will employ the first approach for the derivation
It has been shown that the optimal proposal distributionf our optimal algorithm. As discussed later on, this gemeri

that minimizes the variance of the next weights for anypptimal filter fits perfectly to the problem of mobile robot

generic particle filter is given by [7]: localization. A variation using selective resampling can b

devised for SLAM, but this will be not addressed here due

to space limitation.

Ill. THE OPTIMAL PARTICLE FILTER

xgi] N q($t|xt71’[i]»ztvut) :p(xtmtfl,[i]’zt,ut) () o . . .
R I S A KR B. Derivation of the optimal filter algorithm

p(ze|at= Ll 21 gt In the following we derive the algorithm for generating

a dynamically-sized set of samples according to the exact

For mobile robots this proposal requires drawing Sample;?osterior being estimated. To clarify the exposition weehav

from the product of the transition (robot motion) and Ob'summarized the process graphically in Fig. 1.

servation models, which are the terms that appear in the ]

numerator of (3), respectively. Since the system statehor t . we ;tart by assuming that a sgt f; paruqles:ctfl
i ) . ... is available which areexactly distributed according to the
last time step ;) does not appear in the denominator, it is

a valuep;, however different for each particle Therefore, posterior of our system for the time step- 1, that is:
to draw samples from the optimal proposal is equivalent to

draw: wily ~plrale ™ ut (6)
Observat del Transit gl Since these samples are optimally distributed, all of them
eEn hnlasio sty will have equal importance weights, and so they can be
i p(zelae, T ) pla ot B 2 gt @ omitted. The assumption of perfectly distributed particle
Ty~

i for the previous time step is not a problem but for the first



TABLE I

iteration of the filter. Typical assumptions for the initizdlief THE OPTIMAL PARTICLE FILTER ALGORITHM

include uniform or Gaussian distributions, depending an th

available information and the spegi_fic probl_em. "y algorithm OptimalParticleFilter (a7}, % {xgk]}ﬁv:tl
Now we introduce a set of auxiliary partlc|§ét]1 with 1. For each particle:l’ |

associated importance Welgmgijl], such thatig‘fl] = Iglll 1.1. Generate a set d@® samplesqggn] ~ p(gjt‘m£2117ut),

for j = 1,..,N and @™ = 1/(NM,_,). That is, we 1.2. Use them to computg(z¢|-) and pmaa (2¢-)-

. . - 1] - . 2. GenerateV; particles, withN; determined by KLD-sampling [8].
repllcateN times each partlcletfl, assigning equal We'ghts 2.1. Draw an index with probability given by weights in (7).

to all of them. Notice that this process does not modify the 2.2. Generate a new sample by rejection sampling:
sample-based estimation of the posterior, since eactclearti 2.2.1. Draw a candidate sampé™ ~ p(z¢|zl” | us).
i is replicated the same number of times. We will use thege 2.2.2. ComputeA through (10).
auxiliary particles just as a computation artifact: in pice 2.2.3. With a probability ofl — A, go back to 2.2.1.
only a few of them need to be generated, as will become
clear below. Therefore, the valu¥ is left undefined here,
although it is convenient to think of it as a large value, Ijea With the B samplesz]" generated according to the system
the infinity. transition model, e.g. the robot motion model for localiaat
The auxiliary particles are propagated according to thand SLAM. The numbei is a parameter of our algorithm,
optimal proposal, in (4), in order to obtain a large amour@nd will be typically in the range 10 to 200 depending on
(ideally infinity) of optimally distributed particlesi!”!, the specific problem addressed by the filter.
from which we will finally keep only the required ones Going back to the resampling of the auxiliary particles,
for providing a good representation of the posterior. Thiéor each drawn index we generate a new optimal particle
is achieved by generating the new set of partid)gg by by taking the value ofany auxiliary particle i'n. thei'th .
resampling the set of auxiliary samplég’j]. group, since all of them have e_qual probablllt_y of bel_ng
The key point that allows us to directly generate théﬁc']e‘fted in the res[zar?plmg. That is, the new optimal particl
optimally distributed particles without computing all the®: IS & copy ofZ; 7'7_1 where the value of is irrelevant.
auxiliary ones is that all the auxiliary particlé§”) coming The importance weights of the final particles given by
from a given particlexl[ﬂl will have equal weightsThis our aIgo_nthm can be ignored, since par_tlcles obtained by
property follows from the fact that the concrete value of théesamplmg all have.exactly the same weights.
particle at time steg does not appear in the computation Ve need to provide a.metj?io%i to compute the concrete
of the new weights, as described by (5). These groups ¥flue of the auxiliary particles, ’]. for some certain value
equally-weighted samples are sketched in Fig. 1. of i. We employ here the rejection ggmpllng technlque_ to
Thus, the optimal particlesy“] are generated by resam-draW, from the product of the transn.lon and' observat!on
pling the auxiliary set at time step Similarly to auxiliary densities B refer to (4?,;] Basma]ly, this technique cossist
particle filters [19], we perform this by drawing indexes Of generating samples,” following one of the terms of
of particles for the previous time step, in our case with '€ product (the transition model), and accepting the sampl

probability proportional to the WeightBF’”,which are given with a probability A proportional to the other term (the
by: observation model) [14]:

> - . k] t—1,[)] t—1 ,t
ajt[z,J] _ a}&]l]p(ztmt—l,[z]’ Zt_l, ut) (7 A= p(zt|:17t , T [ ]72 U ) (10)
T . . ﬁmaw(zt|xt7xt_17[i]7Zt_la ut)
Here the a priori likelihood of the observatian can be
expanded using the law of total probability: We must remark that this technique has a random exe-

cution time. The only quantity required to evaluate (10) is
the maximum value of the observation modgl,..(z:|-),

Pz’ 10 2t = (8)  which can be estimated simultaneously to the Monte-Carlo
/p<xt|$£ill7ut>p(zt|xt7xt—l,[i],Zt—l)dxt approximatipn in (9) for the same.set of sampté@, thus
it does not imply further computational cost.

The terms that appear inside the integral above are theUp to this point we have shown how to generate one
system transition and observation models, respectivaigeS particle according to the true posterior given the set of
we are assuming in this work that we can 0n|y draw Samp|d§irti0|es for the pI'EViOUS time step. The above method can
from the system transition model and evaluate pointwisee repeated an arbitrary number of times to generate the
the observation model, a Monte-Carlo approximation of theequired number of particles; for the new time step. To

integral p(z|-) ~ p(z/|-) can be obtained by means of: determine this dynamic sample size we propose to integrate
here the method introduced by Fox in [8]. There it is used

L& the concept of Kullback-Leibler distance (KLD) [2] to degiv
Pzt 0 271 gty = 5 Zp(ztIan],xt_l’[i],zt_l) (9) an expression for the minimum number of part|c1é§sgch_
ot as the KLD between the estimated and the real distributions
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Fig. 2. A comparison of our method to other two particle filtess & linear, Gaussian system. The top row shows the particlésaeights obtained

for each algorithm. Below the weighted histograms of the sasnigleompared to the exact Gaussian density. This similarityeasured in the third row
with the Kullback-Leibler distance between the real andehémated distributions for different sample sizes. Obséwe our method achieves a lower
distance (a higher similarity) even for a few particles.

is kept below a certain threshotdwith a probabilityl — 4.  sample size in our method for comparison purposes with the
Please, refer to [8] for further details. others). The average KLD for 1000 realizations, shown in

To summarize the introduction of our algorithm we preserthe bottom row of Fig. 2, confirms that our approach gives
an algorithmic description of the overall method in Table Il estimations closer to the actual posterior (with less plas)

than previous methods.
V. EXPERIMENTAL RESULTS

In this section we will first present simultations for com-g_ | gcalization
paring our filtering algorithm to others, and next we will
show experiments where our approach is applied to robot The following experiments consist of tracking the pose of

localization (position tracking). a mobile robot equipped with a laser range finder while it is
_ _ manually guided through an office environment. Concretely,
A. Simulations the path and the (already built) map of the environment are

We have considered here a one-dimensional linear syst&hown in Fig. 3(a). The purpose of the first experiment is to
with Gaussian transition and observation models. Such @@mpare the accuracy in the localization between our optima
simple system allow us to contrast the output of the differerfampling mechanism and the standard proposal distribution
filters with the analytical solution from a Kalman filter (KF) The resolution of the grid is 0.04m, and the non-parametric
which provides us the exact posterior. The situation beingoservation model is the likelihood field described in [23].
simulated is that of an observation model much more peakedThe accuracy has been calculated by averaging the local-
than the prior distribution obtained from the system trimsi  ization errors of all the particles at each time step, andgusi
model, a situation similar in mobile robotics to a poor motio as the ground truth the robot poses estimated while the map
model (such as odometry) and a very precise sensor (susls first built. Significant results are obtained by averagin
as a laser scanner). The top graphs of Fig. 2 represent th¢er 100 executions for each sample size. The capability of
location and weights of the obtained particles with thre@dapting the sample size in our algorithm has been disabled
different algorithms: a SIR filter with a standard proposain this first experiment to provide a fair comparison to
distribution [21], an auxiliary particle filter (APF) [19and a standard PF. The most interesting conclusion from the
our method. We can observe how the standard proposal lea@sults, in Fig. 3(b), is that our optimal PF has an excellent
to most of the particles being wasted in non relevant areg@erformance starting from just one particle (an averager err
with negligible importance weights. The APF introduces &f roughly 0.10m), whereas the standard proposal needs
great improvement in this sense, since particles are moadout 10 particles or more to avoid the filter to diverge (e.g.
concentrated in the area of interest. However, the weightBe average error of 6m for one particle means the filter has
still contain a certain variance. In contrast, our optimalost track of the localization).
algorithm generates particles distributed exactly adogrd  On the other hand, our method requires more computation
to the true posterior, thus they all have the same weightsme than the standard approach. For example, for 100
To measure the accuracy of each particle filter we havgarticles, ours takes 50.56s for the whole experiment while
reconstructed the estimated densities by means of weightte standard PF takes 9.91s only. Thus, one could argue that
histograms, shown in the middle row of Fig. 2 along with thea standard PF with more particles would achieve a similar
analytical solution from the KF. To evaluate each algorithmaccuracy than our optimal PF for the same computation time.
we have computed the KLD between the analytical and thi&ctually, we can see in the graphs that our method always
estimated distributions for a range of sample sizes (we haaghieves a better accuracy than the standard approach, even
disabled here the capability of automatically determirtimgg  with much fewer particles and a similar computation time.
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Fig. 3. Results for localization experiments. (a) The map uUsedhe
experiment and the robot path. (b) The average positionirgr esing the
standard proposal and our optimal algorithm, both for difiesample sizes
(results averaged over 100 repetitions). Observe how ounodgberforms
well even for just one particle. (c) The number of particlesdar method
(determined automatically), starting in a situation of gldbaalization with
10000 particles distributed uniformly.

[11]
[12]

[13]

A second localization experiment has been carried oy
where the adaptive sample size capability of our algorithm
is enabled. In this case, we start in the situation of global |
calization (initially there are 10000 particles distriddtuni-
formly over the whole environment). As shown in Fig. 3(c),
the sample size drastically falls in the first few iteratidas
the range of 20-30 particles, and it remains approximately
fixed along the whole experiment. This is because there
are no situations where the sensors become particulaffy/]
ambiguous.

[15]

[18]
V. CONCLUSIONS
In this paper we have identified a problem, localization, o
with grid maps, where a particle filter is required but the
lack of a closed-form observation model prevent the direigo]
application of the optimal proposal distribution. We hav
derived a new algorithm that allows a particle filter to explo
this optimal proposals even for non-parametrical modeks. W
have shown how the method focuses the samples in tl&q]
relevant areas of the state space better than previouslparti
filter algorithms in simulated experiments, as well as thé&2l
suitability to real robot localization. 23]
Additional work will be required to explore the interesting
applications of this method to SLAM, where a dynamid24]
number of optimally distributed particles will improve estt
works on RBPF-based grid mapping.
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