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Abstract

Rao—Blackwellized particle filters (RBPFs) are an implementation of
sequential Bayesian filtering that has been successfully applied to
mobile robot simultaneous localization and mapping (SLAM) and ex-
ploration. Measuring the uncertainty of the distribution estimated by
a RBPF is required for tasks such as information gain-guided explo-
ration or detecting loop closures in nested loop environments. In this
paper we propose a new measure that takes the uncertainty in both
the robot path and the map into account. Our approach relies on the
entropy of the expected map (EM) of the RBPF, a new variable built
by integrating the map hypotheses from all of the particles. Unlike
previous works that use the joint entropy of the RBPF for active ex-
ploration, our proposal is better suited to detect opportunities to close
loops, a key aspect to reduce the robot path uncertainty and conse-
quently to improve the quality of the maps being built. We provide
a theoretical discussion and experimental results with real data that
support our claims.
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1. Introduction

The automated mapping of unknown environments is one of
the fundamental problems that need to be solved to achieve
truly autonomous mobile robots. The difficulty of this task fol-
lows from the fact that a precise map can only be obtained
from a well-localized robot, but in turn the quality of the ro-
bot pose estimation depends on the map accuracy: this is the
simultaneous localization and mapping (SLAM) problem. In
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recent years, methods based on estimation theory have dom-
inated the research in this field. In these approaches the ro-
bot pose and the map are represented in terms of probability
densities which are tracked over time. Tracking is usually per-
formed through a Bayesian filtering of either Gaussian (Dis-
sanayake et al. 2001) or Gaussian mixture (Porta and Krose
2006) distributions with Kalman filters, or sequential Monte
Carlo (SMC) sampling schemes with particle filters (Doucet
et al. 2000b). More concretely, the ability of SMC methods to
solve the problems of global localization (Dellaert et al. 1999)
and SLAM (Doucet et al. 2000a) efficiently has been demon-
strated, because they can deal with non-linear models and any
shape, multi-modal distributions. From this family of meth-
ods, Rao—Blackwellized particle filters (RBPFs) are widely
employed to estimate both the robot path and the map simul-
taneously (Grisetti et al. 2007b; Montemerlo et al. 2002). In
this scheme, probability densities are maintained by a set of
weighted particles, which are hypotheses for the robot path.
The Rao—Blackwellization consists of deriving maps analyti-
cally from these paths, which reduces the dimensional com-
plexity of the SLAM problem (Doucet et al. 2000a). The most
likely path (and, therefore, map) is usually considered to be
that associated with the particle with the highest weight, as the
example in Figure 1(a) shows.

In general, SLAM methods passively process incoming
sensor data and update the map and path estimates iteratively.
However, the advantages of allowing the robot to actively con-
trol its movements while building a map, that is, active explo-
ration, are well known and have been reported in the literature
(Stachniss et al. 2004; Sim and Roy 2005). Exploration meth-
ods aim at controlling a robot through an unknown scenario in
such a way that the whole environment is mapped while min-
imizing some cost function, such as the total distance traveled
(Yamauchi 1998; Burgard et al. 2000) or the uncertainty in lo-
calization (Stachniss et al. 2005b). To illustrate the potential
impact of movement selection in the accuracy of the resulting
map, consider the example in Figure 2(a) where a robot ex-
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Fig. 1. (a) The most likely map in RBPF mapping is the map associated with the particle with the highest weight. (b) In this paper
we introduce the expected map (EM), a weighted average of maps computed from the contribution of all of the particles in the
RBPF. The uncertainty of the RBPF in both the robot path and the map content can be effectively determined by this new map.

plores an environment with a loop (an equivalent example from
experimental data was reported by Stachniss et al. (2004)). In
Figure 2(b) it has traveled almost all the way round. The un-
certainty in the localization along the path increases as long
as the robot does not revisit a known area, where the registra-
tion between recent and past observations would reset the ac-
cumulated errors (Lu and Milios 1997). This is schematically
illustrated in Figure 2(b) with larger uncertainty ellipses as the
robot moves further away from the origin. Next, the corridor
on the right can be explored, but we should consider the con-
venience of closing the loop. In the first case (see Figure 2(c)),
revisiting the known area drastically reduces the localization
uncertainty, thus the final map will be more precise than if the
loop is not closed, the situation illustrated in Figure 2(d). Note
that higher uncertainty in the localization makes the detection
of the closure of large loops more difficult. Therefore, the map-
ping process will be easier if the robot is prone to revisiting
known places as soon as possible to reduce its localization un-
certainty.

In addition to the uncertainty in the robot path, uncertainty
also exists in the maps owing to the lack of knowledge about
unexplored areas, the noisy nature of sensors, and the mis-

alignment of observations from a poor localization. Any in-
tegrated approach considering SLAM and active exploration
must take into account both uncertainty sources when choos-
ing movement actions. On the one hand, it is desirable to take
the robot towards unknown places in order to incorporate new
information into the map, but, on the other hand, this will usu-
ally decrease accuracy in the localization (until revisit). Ap-
proaches in the literature quantify only one of these opposing
factors, both of them, or propose some kind of combined mea-
surements (Bourgault et al. 2002; Stachniss et al. 2005a). Mea-
suring the uncertainty of a RBPF is also a fundamental part of
the techniques for mapping environments with multiple nested
loops (Stachniss et al. 2004, 2005b).

In this paper we introduce a new uncertainty measure that
simultaneously considers the robot path and the map content.
The key idea behind our paper is that of evaluating the consis-
tency between individual maps from all of the hypotheses (par-
ticles) in a RBPF: because these maps are generated from each
path hypothesis, we are also implicitly evaluating the consis-
tency between the estimated paths. Note that in a RBPF the es-
timated paths are stored only because they determine the map
hypotheses. To evaluate the consistency between hypotheses
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Fig. 2. (a) and (b) The uncertainty in the robot pose while exploring an unknown environment increases as long as it does
not revisit a known area, as schematically illustrated with uncertainty ellipses. If the robot closes the loop (c) to reduce its
uncertainty before exploring a new corridor (d), the resulting map will be much more accurate. Therefore, exploration methods

must be favorable to performing loop closing.

we introduce the expected map (EM), a weighted average of
maps computed from the contribution of all of the particles in
the RBPF. As can be observed with the example in Figure 1(b),
inconsistencies between maps appear in an EM as blurred ar-
eas. Instead of measuring the uncertainty in this map directly
through its entropy, we define here the information (I) and the
mean information (MI) of a grid map. Both information met-
rics are based on the entropy but avoid some of its undesirable
properties when applied to grid maps. Concretely, both mea-
sures are independent of the grid map extent, while the MI is
also practically independent of the map resolution for typical
grid cell sizes. Although the information and the MI can be
applied to any grid map in general, they are introduced in this
paper to obtain a measure of the uncertainty in the EM of a
given RBPF. In summary, in this paper we propose two differ-
ent uncertainty measures:

(i) The MI of the EM (EMMI) provides an alternative to the
entropy of the robot path in applications such as loop
closure detection (Stachniss et al. 2004). As discussed
in the following, the entropy of the path may not be
well defined in the context of a RBPF owing to the spar-
sity of the particle representation, which does not affect
EMML

(i) The information of the EM (EMI) performs more appro-
priately than other measures for the case of exploration
using occupancy grid maps, because actions aimed at
closing loops are given more importance than the explo-
ration of new areas when the current pose uncertainty is
high. The benefits of closing loops while exploring have
been reported previously (Stachniss et al. 2004, 2005).
We discuss the theoretical ground of this behavior as
well as providing real-world exploration experiments.

We must remark that our proposal is not a different ap-
proach for computing the joint entropy of a RBPF. Instead,
we propose to measure the uncertainty in a RBPF by means of
the entropy of a new variable (the EM of the RBPF) to avoid
the undesirable property of the joint entropy of missing oppor-
tunities to close loops in grid map-based exploration.

The rest of this paper is organized as follows. In Sec-
tion 2 we review previously proposed uncertainty measures.
Then, in Section 3, the EM is defined in the general frame-
work of SLAM and in the concrete case of a RBPF. We in-
troduce our new information metrics for grid maps in Sec-
tion 4 and in Section 5 we compare them to other uncertainty
measures. We then show experimental results for active explo-
ration and loop-closure detection using our proposed measures
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in Section 6, and, finally, we provide some conclusions in Sec-
tion 7.

2. Related Works

Probabilistic approaches have dominated the research in ro-
bot localization, map building, and active exploration for more
than a decade. Classically, the most widely employed proba-
bilistic representation for robot poses has been the multivari-
ate Gaussian distribution, where a mean pose vector and a
covariance matrix are maintained (Dissanayake et al. 2001).
This approach can be used in the context of position track-
ing (where the initial pose distribution is known), global local-
ization (there is no knowledge about the robot starting loca-
tion), and landmarks-based SLAM (both the pose of the robot
and a set of landmarks is to be estimated). This latter per-
spective has been dealt with through Kalman filtering (KF;
see Kalman (1960)) or extended Kalman filtering (EKF; see
Julier and Uhlmann (1997)). Uncertainty in these methods is
related to the covariance matrices, thus the entropy of such
matrices becomes a natural uncertainty measurement (Vlas-
sis et al. 1999; Bourgault et al. 2002). However, the intractable
growth in complexity of these filters (O(N?) for N landmarks),
their restrictive assumption of Gaussian distributions, and their
inability to deal with raw data (features must be extracted)
have led to the proposal of more efficient approaches in re-
cent years. In the scope of global localization, methods based
on localization probability grids (Fox et al. 1999) avoid the
Gaussian assumption by dividing the pose state space into a
regular grid. The uncertainty of the robot pose can then be es-
timated by the entropy of the density discretized in a grid (Bur-
gard et al. 1997; Roy et al. 1999). Nevertheless, key disadvan-
tages of this space representation are its extensive computation
and storage requirements.

More recently, Monte Carlo methods (particle filters) have
gained huge popularity in the mainstream robotic research ow-
ing to their advantages: a limited number of particles ensure
a bounded computation complexity and, because particles are
focused on the regions of interest, the resources are employed
efficiently. We must distinguish between the particle filters
used for localization (Dellaert et al. 1999) and for SLAM (or
active exploration; see Stachniss et al. (2005a)). The former
assume that the map is known a priori and thus the robot pose
is the only variable to estimate. However, the dimensionality
of the SLAM problem (the problem addressed in this paper)
is higher than in the case of localization because the content
of the map must also be estimated. RBPFs represent a very
efficient solution to these problems, allowing us to simultane-
ously estimate both the robot poses (path) and the map (Doucet
et al. 2000a). There are some proposed measurements for the
uncertainty of the robot pose only (ignoring the map), such as
the volume covered by particles (Stachniss et al. 2004) or the
entropy of the Gaussian distribution which approximates to the

particles (Stachniss et al. 2005a). A particularly original pro-
posal can be found in Fox (2003), where the Kullback—Leibler
distance is used to measure (and bound) the error caused by
the approximation of the pose distribution by a discrete set of
particles.

Regarding the uncertainty in maps, entropy has also been
employed as a measurement for different map representations:
point-clouds, landmarks, or occupancy grids (Bourgault et al.
2002; Saez and Escolano 2005). However, in RBPF mapping
we have multiple map hypotheses simultaneously. Thus, the
entropy of maps needs a proper mechanism to explicitly con-
sider the consistency between hypotheses, a role played by
the EM in this paper and not found, to the best of our knowl-
edge, in any previous work. We believe that although entropy
is a founded measurement of the information in maps, its di-
rect use on maps has some important drawbacks (as exposed
in the next section). This is the reason why we propose only
entropy-based measures, i.e. the information and the MI of a
grid map, which solve these shortcomings. The methods men-
tioned above consider only the uncertainty either in the robot
pose or the map. Others have proposed combined estimators
which take into account both sources of uncertainty. We think
that considering one uncertainty source only is inappropriate
for active exploration approaches if we desire to obtain both
a good localization and a consistent resulting map. Bourgault
et al. (2002) computed and weighted individual entropies to-
gether, where weights are obtained experimentally. A more el-
egant method was reported by Stachniss et al. (2005a), which
computes the joint entropy of the two variables. In spite of
this latter method being mathematically founded, a number of
problems discussed in this paper limit the utility of the method
in practice. Interestingly, drawbacks to the use of joint entropy
as the policy in exploration are also discussed by Sim and Roy
(2005), where an alternative uncertainty measure is presented
for EKF-based exploration.

In the context of multi-robot exploration, Ko et al. (2003)
proposed separate heuristic functions for the cases of exploring
a new area and meeting another robot (an event equivalent to a
loop closure), while in (Burgard et al. 2000) other non-entropy
based utility functions are proposed to prevent different robots
from exploring the same areas.

From the methods discussed above, the joint entropy is used
throughout this paper as a reference for comparisons because it
is one of the most significant measures in the context of RBPF-
based grid mapping.

3. The EM of a RBPF

In this section we first state the SLAM problem from a se-
quential filtering viewpoint, which includes RBPF. Next, we
introduce the concept of an EM for such a particle filter and
discuss its properties.
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Fig. 3. The probabilistic inverse model of a sensor estimates the occupancy of map cells given that some reading z; (distance to
obstacle) has been obtained. This density is plotted for a laser range finder (and for a measurement of z; = 0.5m) as a function

of the distance from the sensor to cells.

3.1. Preliminary Definitions

Assume that we have a robot moving in a planar scenario
whose pose can be described by x = [x y ¢]7, where
(x, y) are 2D coordinates and ¢ is the robot heading. The real
pose at each instant of time k is unknown and can be esti-
mated through Bayesian filtering (Dellaert et al. 1999). Within
a RBPF (Doucet et al. 2000a) we estimate the probability den-
sity of the robot path through a particle filter that implements
the recursive Bayesian formula:

Xk | Uik, Z1k)
< plzx |Xk,ul:k,11:k—1)/P(Xk | Xk—1, 1)

x  p(Xr | Uik—1,Z1k—1) dXk—1, (D

where for any time step k, z; are sensor observations and u
are robot actions (typically incremental displacements given
by odometry (Dellaert et al. 1999) or range scan matching
(Hahnel et al. 2003; Stachniss et al. 2005b)). For clarity in the
rest of the paper, we represent 71 and u 1, by dj.

In this paper we consider maps represented through occu-
pancy grids, which have been a popular representation in the
robotics community during the last 20 years (Moravec and
Elfes 1985; Moravec 1988; Elfes 1989; Thrun 2003; Stachniss
et al. 2004; Grisetti et al. 2007b). An occupancy grid map m is
a discrete random field where we store the occupancy proba-
bility for each cell, which we denote by p(m,) for a cell with
indexes (x, y). If no prior information about obstacles is avail-
able, the occupancy probability for all cells can be initially set
to 0.5: each cell can be occupied or free with the same prob-
ability. A grid map is updated by integrating sensor measure-
ments through the so-called inverse sensor model (Thrun et al.
2005),

p(mxy | Zk)’ (2)

that is, the likelihood of the cell m,, being occupied, condi-
tioned to a given observation z;. Fusing the current observa-
tion with the previous contents of the map can be done on a
Bayesian basis by using the following iterative expression:

p(mxy | z1:x)

-1
(1 + 11— p(mxy | Zl:k—l) 1- p(mxy I Zk)> , (3)
p(mxy | Z1-1) p(mxy | zx)

which can be easily derived from the log-odds representation
of the update process (Moravec 1988) if we assume an initial
occupancy likelihood of 0.5 for all cells. Essentially, (3) in-
creases the certainty in the occupancy/freeness of a given cell
if subsequent observations confirm the current belief. The only
density required to iterate (3) is the inverse sensor model in (2).
For the common case of a laser range scanner we can consider
a function such as that depicted in Figure 3.

At this point we have defined stochastic representations for
both the robot path and the map (in (1) and (3), respectively),
thus we could compute their entropy values separately to mea-
sure their uncertainty. In turn, we propose here to build a new
map, the EM, aimed at revealing inconsistencies between the
maps hypotheses in a RBPF, and aimed at measuring the over-
all uncertainty of the filter.

3.2. Definition of the EM

The EM is defined as the mathematical expectation of the
probability distribution of the map taken over all of the pos-
sible paths, given by the posterior p(X; | dix), that is, the
result of marginalizing out the robot path from the SLAM pos-
terior:

P(EM | diy) = Ex,, [p(m | X1, d14)]. 4
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In the context of SLAM we know the posterior of the robot
path, given by (1). Thus, the definition of the EM above can be
rewritten as

P(EM | diy) = /P(m | X1k, dik)p Xk | dix) dXix. ()

In the concrete case of RBPF-based SLAM and occupancy
grid maps, the EM is a grid map where the occupancy of each
cell EM,, can be obtained from the contributions of all of the
map hypotheses in the RBPF, each one associated to a path
hypothesis:

M
p(EMxy | dl:k) ~ Zwl[(l]p(mxy | x{l;}p dl:k), (6)
i=1
where M is the number of particles in the filter and the a),[("]
are their associated importance weights. The intuition behind
(4)—(6) is that by contrasting the occupancy values of cells m
at the same location (the same (x, y) indexes) but from maps
associated to different particles, we can test the coherence be-
tween hypotheses, which cannot be measured directly by other
methods such as the joint entropy (as shown in Section 5.2).
The resulting map can be visualized as an image where sharp
areas indicate certain information whereas blurred areas in-
volve uncertain regions, i.e. there are contradictory hypotheses
about their content. This is illustrated in Figure 4(c), where we
obtain an EM with uncertain occupancy values (close to 0.5)
for cells with contradictory content in the individual maps. An-
other example for real data has been shown in Figure 1(b).

In the next section we define information metrics capable of
measuring the information of an EM. As expected, those mea-
sures assign a higher amount of information to “sharp” maps
than to “blurred” maps. If we think of the EM in an active ex-
ploration framework, it is clear that desirable actions are those
that lead to information being gained in the EM, caused either
by the exploration of new areas or by the closure of a long
loop.

4. Information Metrics for Grid Maps

In the following we define two metrics which measure the in-
formation in a given occupancy grid map (and, in particular, in
an EM). Information theory establishes that the information as-
sociated with a random variable is related to its entropy (Cover
and Thomas 1991). As each grid cell is a discrete random vari-
able with two possible outcomes, i.e. a Bernoulli distribution,
its entropy is given by

H(mxy) = _p(mxy) log p(mxy) - ﬁ(mxy) log ﬁ(mxy) @)

with p(my,) = 1 — p(my,). Note that the maximum attainable
entropy is given for p(m.,) = 0.5, that is, for unobserved
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Fig. 4. (a) and (b) Map hypotheses according to a pair of par-
ticles i and j, respectively. (c) Their combination into an EM
reveals contradictory values for some cells (such as those high-
lighted in the figures) by means of a corresponding cell in the
EM with a highly uncertain occupancy likelihood.

cells. Assuming statistical independency between cells, we can
compute the entropy of the whole map m as

H(m) = H(my). 8)

Vx,y

These equations for computing the entropy of a grid map
have been widely used as a measure of the information in the
maps (Bourgault et al. 2002; Stachniss et al. 2005a). However,
in practice it exhibits the following drawbacks:

e Its absolute value depends on the grid extent (the rectan-
gular limits of the map) instead of the actual observed
area. Note that (8) implies that all of the unobserved
cells in a map contribute to the entropy with their maxi-
mum value of uncertainty.

e It also depends on the grid resolution, since this para-
meter settles (along with the map extent) the total num-
ber of cells in the map. This means that the entropy
of any map with unobserved areas (all maps in prac-
tice) increases without bound when resolution increases.
We must remark that corrective scale factors have been
proposed elsewhere to alleviate this problem (Stachniss
2006).
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In order to overcome these drawbacks, we define here the
information / of a map m as the following entropy-based mea-
sure:

Im) = > I(my) (bits),
Vx,y
I(mxy) = 1_H(mxy): ©

where for convenience the entropy H(-) is computed using
base-two logarithms. As a result we obtain a natural measure
of information in units of bits. Notably, the maximum infor-
mation value (1 bit) is given to a certain occupied or free cell,
while the minimum value (0 bits) is associated with any unob-
served cell. It is evident, therefore, that the dependency of the
entropy on the grid extent is avoided using this definition of in-
formation: the limits of the map become irrelevant because all
of the unobserved cells now contribute null information. Thus,
the information of a map 7 (m) is a more practical quantifier
of the uncertainty of a map than the direct application of the
entropy.

In this paper we are also interested in the certainty of the
content of a map, not only in its absolute amount of informa-
tion. To effectively reflect the certainty of a map m we intro-
duce the ML, or T (m), which is defined as

_ I(m)/Nobs
I1(m) =

if Nops > 0

(bits/cell), (10)

0 otherwise

where Ngbs represents the number of observed cells in the
map, i.e. all of those cells with occupancy likelihood different
from 0.5. Note that this measure delivers bounded values in
the range [0, 1], whereas entropy values can increase without
bound.

Consider the following example which illustrates a key fea-
ture of the MI. Two observations are captured from different
poses within the same environment, which separately give rise
to the maps in Figures 5(a) and (b). Alternatively, Figure 5(c)
shows an occupancy grid where both observations are fused
(by means of (3)) with the correct alignment. Here each obser-
vation confirms the other, thus occupancy values of cells are
closer to 0 and 1 than in the previous maps made from a sin-
gle observation. Consequently, the MI of this map is greater
than before because we have more certain information. This
behavior follows from the properties of the information of a
map as defined in (9), whose maximum value is obtained for
occupancy values of 0 and 1. To illustrate an opposing situa-
tion, please note how both observations are misaligned in Fig-
ure 5(d), which is given a lower MI value.

To summarize, we enumerate next the properties of our in-
formation metrics that set them apart from the direct applica-
tion of entropy to grid maps:

(1) An empty map (containing only unobserved cells) has
null information and MI values.

(i) Both measures are independent of the grid map rectan-
gular limits, because unobserved cells do not contribute
to the information in the map.

(iii) The MI is mostly independent of the grid resolution
for practical cell sizes. This is shown in the maps of
Figures 5(e) and (g), whose MI increase as we con-
sider higher resolutions. However, the MI asymptoti-
cally tends towards a maximum value, as can be appreci-
ated in Figure 5(h). This presents the remarkable differ-
ence in performance with the entropy, which in this case
tends to infinity. The asymptotical behavior of MI de-
pends on the inverse sensor model, the specific environ-
ment being mapped, and other factors. In Appendix A
we show how a closed-form expression can be derived
for a given synthetic environment.

(iv) The better the alignment between observations in the
map, the higher the values obtained for the MI, as can
be observed in Figures 5(c) and (d). The intuitive idea
behind this property is that well-aligned observations
make the occupancy of cells to tend towards either O or
1, which correspond to maximum information values.
This property is the key for the distinctive behavior of
the EMMI uncertainty estimator when closing a loop, as
shown in the following.

We discuss next the experiment summarized in Figure 6,
which is aimed at showing how we obtain high MI values
for maps built from well-aligned observations (property (iv)).
Simulation has been chosen here because in that case we know
the real robot pose and we can change the sensor parameters
freely. We have simulated several sets of observations (laser
range scans) from the surroundings of the circled positions
marked in Figure 6(a), according to some given errors in po-
sitioning (x, y) and orientation (6). The observations are also
corrupted with an additive Gaussian noise of standard devia-
tion o. Next we compute the MI of the grid map built from
these observations following (3). The average results are plot-
ted separately in Figures 6(b)—(e) for errors in orientation and
position, and for different levels of sensor noise. As expected,
the highest value of the M1 is obtained for the correctly aligned
observations. We can also remark how more precise observa-
tions (with lower error o) lead to more selective MI values.

5. Comparison with Other Uncertainty
Measurements

In the following we compare our proposed uncertainty mea-
sures, namely the EMI and EMMI, with other entropy-based
methods, such as the entropy of the robot path (Burgard et al.
1997; Roy et al. 1999; Vlassis et al. 1999), the effective sample
size, Neg (Liu 1996), and the path—map joint entropy (Stach-
niss et al. 2005a). We provide here a theoretical discussion

Downloaded from http://ijr.sagepub.com at Oxford University Libraries on February 15, 2008
© 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.


http://ijr.sagepub.com

80 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2008

I(m)=0.8439 bits/cell

'I(m)=0.8433 bits/cell

I(m)=0.8814 bits/cell

I(m)=0.7671 bits/cell

Cell size:64cm

I(m)=0.8487 bits/cell

Cell size: 16cm

I(m)=0.8911 bits/cell

Cell size: 2cm

(g)

I(m)=0.8791 bits/cell

' ! '
1 resolutions !

0.8

I(m) (bits/cell)

I
10' 10’ 10"
(h) Cell size (cm)

Fig. 5. Examples illustrating the main properties of the MI (/). (a) and (b) Two observations and the MI value of the maps built
from them separately. (c) When both are aligned and fused in the same grid, the information value increases. (d) Inconsistencies
due to poor robot localization decrease the quality of the fused map, which is confirmed by a lower MI value. (e) and (g) The
same map is shown for different cell resolutions, along with their MI values. (h) The MI values obtained for this environment
are plotted for a wide range of resolutions, from 128 to 0.25 cm. Observe the small change in the MI value when varying the
resolution of a map from 1 to 10 cm, which coincides with commonly used resolutions. Thus, in practice, the MI can be regarded
as resolution independent for maps with cell size smaller than 10 cm.

about their complexities and their expected behaviors in typi-
cal mapping situations, while experimental results that support
our reasonings are shown in the next section.

5.1. Expected Behaviors for the Uncertainty Measures

Before comparing the behavior of the different measures, it
is convenient to consider the expression of the joint entropy
(Stachniss et al. 2005a), the method most related to ours, to
better understand its properties:

HXy,m | dix)

= HXx | dix) +/P(X1:k | dix)H (m | X1, dix)

M

N~ Hux |l di) + Y o' Hom | x{3.di). (1D
i=1

It is clear that this measure is a composition of the entropy
of the robot path and the average entropy of individual maps
p(m | x%’:}c, dyx) weighted by w,[f] for each particle i. Three
fundamental drawbacks can be derived from (11):

®

(ii)

The term that considers the entropy of the maps (the
integral in (11)) dominates the overall value, therefore
hiding the contribution of the path uncertainty (the first
term in that expression). The reason is that the former
is typically many orders of magnitude higher than the
entropy of the path. For instance, we have found in our
experiments a typical ratio between both terms of ap-
proximately 10°.

Only the content of individual maps determines the
result, independently of their mutual consistency: this
method is unable to detect inconsistencies between par-
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(a)

MI (bits/cell) MI (bits/cell)

MI (bitsfeall)

Fig. 6. (a) The simulated environment used to test the MI response against sensor noise and localization errors. Observations
have been simulated from the circled positions, a map has been generated from them, and its MI has been computed. (b) The
results for orientation errors only and different levels of sensor noise. (c)—(e) The response of the MI against errors in positioning
(with the correct orientation). The higher selectivity for less noisy measurements is clearly visible. Anyway, the maximum value
is obtained for the correct position and orientation, thus the results show the ability of the MI to measure the consistency between

different observations.

ticles. In other words, the joint entropy is largely deter-
mined by the number of observed cells in maps, being
mostly independent of whether individual maps contra-
dict each other.

(iii) It is not clear how to compute the entropy of the ro-
bot path (the first term in (11)) in a RBPF. We consider
here a good approximation of this value based on fitting
Gaussians to the robot pose at each time step and aver-
aging their entropy along the whole path, as proposed by
Roy et al. (1999) and Stachniss et al. (2005a). However,
we show in the following that this value can become un-
defined after closing a loop.

‘We examine next the theoretical behavior of the four previ-
ously mentioned uncertainty measures for two distinctive situ-
ations that can occur while performing mapping or exploration
with RBPFs. The purpose of this comparison is to show how
our estimators, EMI and EMMI, represent a more reliable mea-
sure than the others for selecting robot actions and detecting
loop-closures, respectively.

5.1.1. Exploration of New Areas

In this case, particles tend to spread in space while their
weights remain practically constant. As a result, the N.g of the
RBPF remains practically constant, while the entropy of the
path increases owing to the higher uncertainty in localization.
Note that this entropy is one of the components of the joint
entropy, but in the case of exploring new areas the information
added to grid maps more than compensates for the increase in
uncertainty in the robot path, thus the overall value of the joint
entropy increases while exploring. Regarding our uncertainty
measures, here the EMI increases, but the number of observed
cells grows as well. However, the increase in the robot pose un-
certainty continuously introduces small incoherences between
individual maps, which is reflected by decreasing EMMI val-
ues.

5.1.2. Loop Closure

In SLAM, coming back to an already known place following
a previously unknown path is a special case of revisit called
loop closure. If the loop is long enough, typically only a few
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particles will be close to the actual path. This will result in: (i)
only a few particles with non-negligible weights, (ii) particles
are resampled, and (iii) the pose uncertainty is largely reduced
(Arulampalam et al. 2002; Grisetti et al. 2007b). It is clear here
that both N.g and the robot path entropy fall drastically. Addi-
tionally, since this entropy is also a term of the joint entropy
(and the other term for the maps remains practically constant
in this situation), we can conclude that the joint entropy also
falls drastically when closing a loop.

However, in practice both of the entropies above break
down owing to the particle approximation of the SLAM poste-
rior. The reason is that typically only one hypothesis survives
the resampling after closing a long loop (for example, refer to
Stachniss et al. (2004)), thus the covariance of the Gaussians
fitted to the robot path collapses to zero. As the entropy of a
d-dimensional Gaussian x ~ A (u, X) is given by

H(x) = 3log((2me)!|%]) (12)
this would imply a negative infinity entropy. We believe that
one solution to this numerical problem is to impose a limit
on the minimum covariance of the robot pose (although this
heuristic value then becomes a determinant of the behavior
of the joint entropy for exploration). For instance, a standard
deviation of 1 mm in x and y has an associated entropy of
—10.98. However, we must highlight the small range of val-
ues for the path entropy in comparison with the second term of
the joint entropy (the uncertainty in maps), which means that,
in practice, the content of maps determines the overall value
while disregarding the uncertainty in the path.

Consider the following numerical example which illustrates
the problem of using the joint entropy for choosing actions
in exploration. A robot faces two potential actions, which are
evaluated trough the joint entropy. The first action closes a
long loop and reduces the robot pose uncertainty in x and y
from 1 m to 1 mm (considering these values as the standard
deviations), whereas we predict that the second action will al-
low us to explore a new area of 1 m? (100 grid cells for a
0.10 m cell size). Straightforward calculations give us an ex-
pected reduction of the joint entropy of 13.82 and 69.3 for the
first and second actions, respectively. Obviously, closing the
long loop is a much more desirable action for the robot here
than the exploration of a small area of new terrain (Stachniss
et al. 2004; Sim and Roy 2005), thus the joint entropy would
be not a good choice for active exploration in this situation.

In contrast, the EMI of the RBPF after closing a loop in-
creases owing to the elimination of incoherent hypotheses
(which generate more “blurred” EMs), the same reason why
the EMMI increases. The particle depletion problem does not
affect our measures because the different path hypotheses are
taken into account through the EM, which is always well
defined.

5.2. Consistency Between Map Hypotheses

We now discuss a key difference between how the EMMI and
the joint path—-map entropy detect inconsistencies between the
individual maps from each particle in a RBPF. In the joint en-
tropy, the entropy of the map contents H (m) contributes to the
total value averaged by the weights of the associated particles.
In contrast, the EMMI considers the entropy of the cells in the
EM, which, in turn, are the weighted average of the maps from
each particle. Consequently, the EMMI computes the entropy
of the average of maps, whereas the joint entropy performs
these operations in the opposite order. To graphically see the
important implications of this difference, Figures 7(a) and (b)
shows a simple example of how the joint entropy fails to cap-
ture inconsistencies. Here, the graphs show the entropy terms
involved in each method for two equally probable particles
(this simplification has been taken to enable the visualization
of the results in three dimensions). The key observation is that
inconsistencies such as one hypothesis stating a cell is free (a
value near 0) and the other stating it is occupied (a value near
1) are detected by EMMI as uncertainty, that is, high entropy
values (see Figure 7(b)). In turn, similar situations are assigned
a low entropy value (high certainty) by the joint entropy, as can
be observed in Figure 7(a).

5.3. Computational and Storage Complexity

Regarding the computational time complexity of all of these
uncertainty measures, the most efficient are the effective sam-
ple size Neg, with O(M), and the entropy of the robot path,
which involves O(M L) operations, where M and L are the
number of particles and the length of the path, respectively.
On the other hand, the joint entropy has a complexity of
O(M(N + L)), where N is the number of cells in the grid.
Clearly, N will be the dominant quantity in practice, thus this
complexity will tend towards O(M N). However, because each
observation will modify only a limited area of the grid maps,
we can reduce the computation complexity of the joint entropy
to O(M). Unfortunately, the construction of the EM (required
for the evaluation of the EMI and EMMI measures) depends on
the weights of the particle filter, hence it cannot be simplified
and the complexity of building the EM becomes O(M N). This
is the price for testing the consistency between difference map
hypotheses (refer to the previous section).

Concerning the space complexities, our methods require the
computation of one additional map, the EM, in addition to the
M maps associated with the particles in the RBPF, whereas
the joint entropy does not require this supplementary storage.
However, this cost is not significant because it implies keeping
M + 1 maps instead of M, where M is the number of par-
ticles.
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Fig. 7. Entropy terms involved in (a) the path—-map joint entropy and (b) the EMMI are plotted for the case of only two particles,
as an example of how each approach deals with different hypotheses. It is clear that the first approach considers contradictory
values as certain (low entropy), such as p; = 0 (free cell) and p, = 1 (occupied cell), whereas EMMI only gives low entropy

values when both likelihoods are similar (consistent).

6. Experimental Results

In this section we provide an experimental validation of our
methods through comparisons with other common uncertainty
estimators. Firstly, we perform a statistical analysis of the
EMMI measure in order to check its ability to detect the clo-
sure of loops through the changes in the EM of the RBPF. Next
we show how EMI can be applied to active exploration and
compare its performance with that of the joint path-map en-

tropy.

6.1. Statistical Characterization of EMMI

Owing to the stochastic nature of particle filters, it is desir-
able to carry out many realizations of each RBPF simulation
to obtain statistically significant results. This is the reason
why in this experiment we have repeated the mapping process
20 times (each realization takes 20 minutes with a 3.2 GHz
Pentium 4), hence enabling a more convenient comparison by
the mean values and variances of the different uncertainty mea-
sures. The experimental setup consists of an optimized RBPF
(Grisetti et al. 2007a) which consumes data gathered by the ro-
botic wheelchair SENA (Fernandez-Madrigal 2004; Gonzalez
et al. 2006) in the streets surrounding a building in our campus
(see Figure 8). Sensory data consist of odometry readings and
scans from a SICK laser range finder.

In this experiment the robot completes two laps around the
building, which is a total distance traveled of 550 m at an aver-
age speed of 1.5 m/s. The most critical point is when it closes

the loop for the first time. Figure 8(a)—(d) represent the evo-
lution of the EM at some instants of time during the mapping.
The “blurred” aspect of the EM is more perceptible as the robot
moves farther along the loop, until it definitively closes it. This
closing starts approximately at time step 150, where the uncer-
tainty owing to the dispersion of particles starts to decrease.
After that, the path estimation and the map remain accurate
while the robot travels over the same path again. This illus-
trates the fact that the uncertainty continuously increases while
the robot explores unknown areas and that it rapidly decreases
when the loop is closed. To measure these changes we have
computed both the EMMI and the joint entropy (theoretically
compared in Section 5). The entropy of the path, also discussed
there, has not been considered in this statistical comparison be-
cause it does not reflect the uncertainty in maps. In addition,
the effective sample size Neg and the 30 (99.7%) confidence
area occupied by the particles in the space have also been com-
puted for illustration purposes, although they are unfounded
uncertainty estimators. Results are plotted in Figures 8(e)—(h),
where mean values from the 20 experiments are shown as full
curves and +20 confidence intervals appear as dashed curves.
Note that these intervals are for fitted Gaussian distributions,
hence they can exceed the valid range of the variables, i.e. the
upper confidence limit in Figure 8(g).

The evolution of the uncertainty estimators can be inter-
preted as follows. In the case of the EMMI, it decreases (less
certainty) while the robot travels along the loop for the first
time. After the loop closure, this estimator restores its high
value (more certainty). This behavior can be observed in Fig-
ure 8(e) in the first gradual decrease and the posterior rise be-
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Fig. 8. (a)—(d) The EM for some steps of the mapping. The uncertainty estimators are (e) the EMMI, (f) the joint entropy, (g) the
effective sample size, and (h) the area occupied by the particles. The ability of the EMMI to better reflect the actual uncertainty
of the RBPF than the others is shown. The experiment has been repeated 20 times and the mean values for all of these estimators
are plotted as full curves together with their 95.4% confidence intervals (20 using approximate Gaussian fits) as dashed curves.

yond time step 150. Note how the EMMI remains practically
constant during the rest of the experiment. On the other hand,
the joint entropy has been shown to be the estimator with the
smallest variance, i.e. its values do not vary significantly be-
tween different runs. This is due to the dominance of the maps
entropy in the estimator, which only depends on the number of
observed cells, being (practically) independent of inconsisten-
cies between hypotheses. Consequently, from the results given
by this measure, shown in Figure 8(f), we can only know that,
from step 150 to the end of the experiment, a small number of
cells have been updated in the maps. Note that if we were to
use this estimator in active exploration to decide robot actions,
we would be hardly able to distinguish between closing a loop
or any other movement with a similar outcome (in practice, any
other action that does not involve exploration of a new area,

e.g. going back along the traversed path, remaining still, etc.).
This contrasts with the competent performance of the EMMI
in this respect. Regarding the results for the effective sample
size (Nefr), it can occasionally reflect a loop closure by means
of restoring its maximum value owing to an associated particle
resampling. However, the exact moment at which a resample
occurs depends on many implementation parameters. More-
over, a resample can occur many times after a loop closure or
even while exploring new areas, as previously discussed. All of
these facts are reflected in the large variance observed in Fig-
ure 8(g). Moreover, its mean value is not correlated at all with
the actual mapping uncertainty. The last computed estimator
is the area occupied by particles in the space (Stachniss et al.
2005b), which we compute as the area of the three ellipsoids
resulting from approximating particles with a Gaussian distri-
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bution. No only is this estimator not mathematically grounded,
it also does not take into account the map contents. This im-
plies that, for example, it cannot distinguish between dispersed
particles or a few separated modes where particles are concen-
trated. Furthermore, this estimator shows a high variance (see
Figure 8(h)) while the robot traverses the loop for the second
time, whereas the actual uncertainty is reduced following the
first loop closure. In these experiments, the time required to
compute the EMMI of the RBPF with a 3.2 GHz Pentium 4
is about 127 ms for a straightforward implementation in C++
and 49 ms for an optimized assembly version that exploits the
highly parallel structure underlying the EM computation (aver-
aging maps from all of the particles, the most time-consuming
task in EMMI) by the Streaming SIMD Extension 2 (SSE2) in-
struction set (Intel 1999). Our implementation of the joint en-
tropy takes 210 ms for the same particle filter, although more
optimal algorithms could be used for its computation.

6.2. Exploration with EMI

To test the performance of EMI in selecting actions in active
robot exploration, we have chosen the information gain-guided
exploration framework proposed by Stachniss et al. (2005a). In
short, the approach can be described as follows. At each time
step we generate a set of potential targets around the robot,
each a potential action. These points are generated using the
most likely map from the RBPF and taking into account the
feasibility of the path given the size of the robot and the po-
tential existence of obstacles along the path. In our implemen-
tation we employ a simple path planner that assumes a circu-
lar robot and extracts collision-free paths according to a given
occupancy grid map. Once we have established those poten-
tial paths (actions), we predict the observations along each of
them by means of ray tracing over the grid. The observations
for each path are integrated into a copy of the RBPF and the
change in the uncertainty of the RBPF determines the infor-
mation gain of each potential action. Finally, the robot takes
the action with the highest utility value, which is computed by
subtracting a cost proportional to the length of the path from
the information gain. The navigation towards successive tar-
gets is performed by an obstacle avoidance method (Blanco
et al. 2006) that runs on the robot in real time and concurrently
to the update of the RBPF for mapping. In our implementation,
the gain in information is computed as the increment of the
EMI associated with the RBPF, although the decrease of the
joint entropy has been also computed for comparison purposes.
Finally, we must remark that the approximation of carrying out
all of the computations just for the most likely particle is ac-
ceptable as long as the robot does not transverse loops that are
too long. In those cases, more particles should be considered
and the utility values averaged using the particle weights.

In this experiment the robot starts in one of the corridors
of an environment containing a large loop, as shown in Fig-
ure 9. For each decision, the robot predicts the EM after the

execution of all of the potential actions and chooses the action
with the highest utility value, as defined above. Some of the
predicted EMs in this way are shown in the middle graphs in
Figure 9. It can be seen how it is typically predicted that un-
observed areas contain free space, which means an increase
in the map information and therefore provides the motivation
for exploring them. As the robot moves farther from the start-
ing point, as in the second row in Figure 9, the predicted EMs
increasingly contain “blurred” areas, owing to the increasing
uncertainty in the robot pose. It is notable that the utility val-
ues obtained from the EMI and the joint entropy for the first
and second decisions in Figure 9 are very similar. This means
that, for actions involving the exploration of new areas, both
measures effectively detect which are the most advantageous
actions: those leading to the exploration of large areas.

It is interesting to remark here that, as long as the predicted
future observations of the robot are random variables, so are
the predicted RBPF weights and the corresponding utility val-
ues. This helps to explain some apparently strange results in
the experiment, such as the assignment of quite different util-
ity values to targets close to each other (e.g. see targets #6 and
#7 for the decision #12 or targets #7 and #8 for decision #18).
Although we have verified that this is not a problem for explor-
ing relatively small scenarios, it could be solved by predicting
future observations a number of times and averaging the re-
sulting utility values.

Consider now the third decision, the bottom row in Fig-
ure 9. Here there is a large amount of uncertainty in the robot
path after traversing the whole loop, and some of the actions
include definitively closing the loop (see target #7, for exam-
ple), whereas others imply entering new areas to continue the
exploration (such as target #12). Interestingly, in this case we
obtain quite different values from the EMI and the joint en-
tropy, as can be clearly observed in the bottom-right graphs in
Figure 9. While the EMI assigns the highest utility to the action
that definitively closes the loop (note the “sharp” EM which is
predicted for action #7), the joint entropy assigns the highest
values to those paths leading to unknown areas. This is because
of the dominance of the uncertainty in maps in this measure, as
discussed throughout this paper, which hides the potential re-
duction of uncertainty in the robot path derived from the loop
closure. Therefore, we can conclude that EMI performs sim-
ilarly to the joint entropy for exploration, with the additional
advantage that it detects much more clearly the possibilities
for closing loops, which reduces the overall uncertainty of the
SLAM posterior in such a way that the rest of the exploration
will be easier than if loops are not closed.

7. Conclusions
In this paper we have motivated the need for measuring the un-

certainty of a RBPF solution to SLAM, which is required for
tasks such as detecting loop closure or exploration. We have
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Fig. 9. Three snapshots of certain moments during an exploration when the robot has to decide between a set of potential
movement actions, marked on the images on the left. The utility assigned to each of those actions is plotted both for our EMI
measure and the joint entropy in the graphs on the right, whereas some of the EMs predicted while evaluating the actions are
shown in the middle. As discussed in the text, the third decision clearly reflects that the actions selected by the EMI are more
advantageous.

highlighted the drawbacks of previously employed measures  tainty in the RBPF, both for the map and the robot path. By
such as the joint path-map entropy. Instead, we propose to  computing the information of this map we define the EMI of
construct the EM, a new map that condenses all of the uncer-  a RBPF, which has some advantages in comparison with other
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Fig. 10. The MI values for the synthetic scenario discussed in Appendix A are shown as continuous plots, together with the
theoretical limit (derived in this paper) as a dashed line. It can be seen how the MI tends toward the computed limit as the

resolution becomes more fine-grained.

measures for choosing actions in active exploration. Moreover,
we have also defined the EMMI, which can be applied to the
problem of detecting when to stop actively following an al-
ready traversed loop. A priori we do not know how long the
robot must follow a known loop for the incorrect particles to
be discarded. To detect when to stop the loop closing behavior,
existing approaches either use the area covered by the particles
or the effective sample size (Stachniss et al. 2004). None of
these methods consider the map contents. We have presented
experimental results that demonstrate that EMMI better fits
this purpose than the other methods.
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Appendix A: Derivation of an Expression
for the Maximum MI Value in a Synthetic
Environment

As the resolution of an occupancy grid increases, its MI tends
towards a maximum value. Unfortunately, a closed-form ex-
pression for this bound cannot be derived in the general case

because it depends on the inverse sensor model, the number
of observations that are merged into the map, and on the envi-
ronment. For a particular case, however, we can derive such an
expression to demonstrate the convergence of the MI and its
high independence of the grid resolution.

Assume that we have a robot equipped with a 360° field-
of-view radial range sensor, standing in the center of a circu-
lar environment of radius R, and making only one observation
(z1). Owing to the circular symmetry we consider the circular
grid map p(m,) instead of the classical p(m,,), where p is
the distance from the origin (where the robot is initially) to a
given point x, y. Thus, the map content is the same in all di-
rections for the whole range of orientations | — 7, 7] from the
origin. Initially, there is no prior information about the map,
thus p(m,) = 0.5 for all of the values of p. If we consider a
range sensor whose measurements are corrupted with additive
Gaussian noise with standard deviation o, its inverse sensor
model can be defined as

e~ (v=2%20" 5 < 74 5/In4,

otherwise,

p(m, | z) = (13)

where z represents the sensed range. Such a sensor model is
plotted in Figure 3.

Downloaded from http://ijr.sagepub.com at Oxford University Libraries on February 15, 2008
© 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.


http://ijr.sagepub.com

88 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2008

For the case of just one observation the Bayesian estimation
of the map becomes simply p(m, | z1) = p(m,|z), where z is
the actual measurement. If we make the cell size tend to zero,
the expression for the MI in (10) becomes an integral over the
map (which is no longer a discrete grid but a continuous sur-
face)

[ JQ—=H(m,)dpdo

Jo fp Obs(m,)pdpdb’

where the binary function Obs(m,) takes the value of 1 for
those positions which have been observed and O otherwise.
The circular symmetry allows us to discard the integration
over, because it leads to constant factors in both parts of the
quotient. Taking this into account, replacing the integration
limits, and solving the denominator, we end up with

I(m)

(14)

1(m)

R = Hexp(—(p = 22200 dp. s

3(z + 0+/In4)?

The integral in the numerator has no analytical primitive,
but precise values can still be obtained by numerical integra-
tion. To demonstrate the convergence of the grid-based MI
measurement towards the continuous solution (15) we have
generated grids for different R, o, and resolution values. Some
of the obtained grids are shown in Figures 10(a)—(c), whereas
the computed MI values are plotted in Figure 10(d) together
with the theoretical predictions from (15). It is clear from these
graphs that MI effectively converges as the resolution increases
and that this limit can be accurately predicted.
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