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A New Method for Robust and Efficient
Occupancy Grid-Map Matching

Jose-Luis Blanco, Javier Gonzalez, and Juan-Antonio Fernandez-Madrigal

Department of System Engineering and Automation
University of Malaga
Malaga 29071, Spain

Abstract. In this paper we propose a new matching method for occu-
pancy grid-maps under the perspective of image registration. Our ap-
proach is based on extracting feature descriptors by means of a polar
coordinate transformation around highly distinctive points. The pro-
posed method presents a modest computation complexity, although it
can find matchings between features reliably and regardless their orien-
tation. Experimental results show the robustness of the estimates even
for dynamic environments. Our proposal has important applications into
the field of mobile robotics.

1 Introduction

Occupancy grid-maps, introduced into the robotics community two decades ago
[1], are a very valuable representation for map building applications of planar
environments [2]. In this representation, the space is arranged in a metric grid of
cells that store the probability of that area being occupied by some obstacle. A
recent trend in map-building research is to consider hierarchical models, where
each node within a topological graph represents a local metric map [3]. A critical
issue for this paradigm is to detect when two local maps correspond to the same
physical place, and, in that case, to compute the relative transformation between
those maps. Solving this problem is crucial for the consistency of the mapping
process. The aim of the present work is to provide a solution to this problem
from an image registration viewpoint when local maps are occupancy grid-maps.

Occupancy grids can be naturally interpreted as grayscale images (called here
map images), where cells in the grid correspond to pixels in the image, thus by
registering the images we obtain the spatial transformation between the maps.
Image registration techniques can be straightforwardly grouped into intensity-
based ones, and those based on feature extraction (see [4] for a review). Al-
though the former approach has been already applied to grid-map matching [2],
an approach based on feature extraction, as the one presented here, is less com-
putationally expensive, becoming more appropriate for being integrated into a
real-time mapping framework.

Our overall approach consists of the following three steps: (i) feature-point
detection in the map images and extraction of their descriptors, (ii) estimation
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of the likely correspondences between features, and (iii) robust estimation of the
rigid transformation between the maps. Since the cell size of all the maps can be
set to any fixed value, there are not differences in scale in this problem. Taking
this into account, in this paper we propose a new descriptor and an associated
method for finding correspondences that are able to efficiently and robustly solve
correspondences between feature points in map images of arbitrary orientation.
Other previously proposed descriptors in the literature, in spite of being very
useful for dealing with real images taken from cameras, become unpractical here
due to different reasons:

– The Scale Invariant Feature Transform (SIFT) descriptor, introduced in [5],
implies much more computation effort than required for the problem ad-
dressed here, since it achieves scale invariance by constructing a pyramid of
auxiliary sub-sampled images.

– In [6] it is presented a descriptor that, although based on polar coordinate
transformation like ours, proposes an additional step for extracting moments
from the Fourier transform. However, we have experimentally verified that
this method is not as well suited as ours to effectively discriminate between
features typically found in map images.

– In [7] it is proposed to take Gaussian derivatives as descriptors, in the con-
text of developing an affine invariant descriptor. We believe that the low
dimensionality of the descriptor proposed there is not appropriate for the
highly ambiguous features in map images.

In the next section we describe our proposal for a feature point descriptor
in map images. Next, section 3 describes the associated methods for measuring
the degree of matching between a pair of features and how to robustly estimate
the map displacement from those matchings. Finally, in section 4 we provide
experimental results for different map matching situations, all of them employing
real data.

2 The Cylindrical Descriptor

We assume that a set of N feature points ϕ = {p1, ...,pN} has been extracted
from a map image using any appropriate method with a good repeatability. In
this work we employ the method proposed by Shi and Tomasi [8], although using
other methods, like the Harris corner detector [9], leads to similar results.

Once a feature point pa = [xa ya]T has been localized, we define its associated
descriptor fa as a mapping of the annular area around the feature point into the
two-dimensional space of polar coordinates r and θ (refer to Fig. 1). Notice that the
cylindrical topology of this transformed space can be interpreted as a “panoramic
image” of the neighborhood of the feature point, as shown with an example in
Fig. 1(c)–(d). Hence it is clear that a rotation in the grid-map becomes a rotation
of the cylindrical image around the θ axis. Here we consider radial distances only
within the range [Rmin, Rmax], e.g. from 0.10 to 1.50 meters, and implement the
descriptor as a Nr × Nθ matrix with dimensions Nr = (Rmax − Rmin)/Δr and
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Nθ = 2π/Δθ, provided the desired spatial and angular resolutions Δr and Δθ,
respectively. The value of the descriptor for each pair (i, j) in the range [0, Nr −
1]×[0, Nθ−1] is given by integration over the corresponding annular sector (please,
refer to Fig. 1(a)–(b)):

fa[i, j] =

φj+1∫

φj

ri+1∫

ri

m

([
xa + r cos θ
ya + r sin θ

])
drdθ (1)

ri = Rmin + iΔr

φj = jΔφ

where m(x) represents the contents of the map at the 2D point x. Notice that,
in practice, the above integration can be computed through a Monte-Carlo ap-
proximation, where a number of points within the integration area are evaluated
with sub-pixel precision by straightforward cubic interpolation.
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θ
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Rmin

θ
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f [i,j]

Rmax

Rmin

f [i,j]

Fig. 1. (a)-(b) The geometry of the descriptor proposed in the text, which maps the
circle around the feature into a cylindric space. An example is shown in (c)-(d).

3 Map Matching

3.1 Measuring the Degree of Matching Between a Pair of
Descriptors

As a motivating example, please consider the pair of features detected in the
maps of Fig. 2(a)–(b), which correspond to the same physical point. The as-
sociated descriptors are shown in Fig. 2(c). It is clear that their cylindrical
descriptors will be very similar for some shift in θ if the features represent a valid
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correspondence. In this particular example that shift is 214o, and the similarity
between the conveniently rotated descriptors is patent in Fig. 2(d). Hence we
propose to measure the degree of matching d(fa, fb) for a pair of descriptors fa

and fb through the minimum Euclidean distance between the descriptors, taken
over all possible rotations:

d(fa, fb) = min
j0∈[0,Nθ−1]

Nr−1∑
i=0

Nθ−1∑
j=0

(fa[i, j] − fb[i, (j − j0) mod Nθ])
2 (2)

Once a matching measure is defined for pairs of features, it must be addressed
how to obtain the whole set of correspondences C = {C1, ..., Ck}, where each
correspondence Ci = 〈ai, bi〉 consists of a pair of feature indexes ai and bi, one
from each map. When (2) is evaluated for a fixed feature in the first map and all
the features in the other, we expect to obtain a low distance (a good matching)
only for a few (ideally only one) of the possible correspondences. An example is
shown in Fig. 2(f), where the correct correspondence is clearly differentiated from
the rest of associations. Provided that a robust association step will be applied
next, it is not a problem to establish at this point more than one correspondence
for each feature, thus the following compatibility test will be sufficient for finding
the set C.

Firstly, the matching of fa with the candidate fb must be sufficiently differen-
tiated from the rest. This condition can be formulated as the distance d(fa, fb)
to be below a dynamic threshold τd = μ − κσ, where μ and σ are the mean and
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Fig. 2. Two maps of the same environment are shown in (a)–(b), while the descriptors
corresponding to the highlighted features are shown in (c) and (d), for a shift in θ of
0o and 214o, respectively. The matching distance between those features is plotted in
(e) for all the possible rotation angles, and in (f) it is shown the minimum distance
between the feature f1 and all the features in the second map, from where the right
correspondence is clearly revealed.
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standard deviation, respectively, of the evaluation of d(fa, fj) for all the possible
values of j. The selectivity of this threshold is controlled by the parameter κ.
Any value in the range 1.5-3.0 is appropriate for most situations, although the
higher its value, the more demanding we are in accepting a correspondence, at
the cost of finding less of them. Secondly, to cope with features without a valid
correspondence, we must set a fixed threshold τf for the maximum distance
between descriptors to be accepted as a correspondence. This parameter, deter-
mined heuristically, has been set to 0.07 for all the experiments in this paper.
This algorithm is summarized in Table 1.

Table 1. The algorithm for finding compatible correspondences between maps

algorithm findCorrespondences(m1 , m2) �→ C
C = ∅
for each fi ∈ m1

μ = Ej{d(fi, fj)} ; Mean and standard deviation, where

σ =
√

Ej{(d(fi, fj) − μ)2} ; j spans over all features in m2

τd = μ − κσ ; Compute the dynamic threshold
for each fj ∈ m2

if d(fi, fj) < min(τd, τf ) ; Compatibility test
C = C ∪ 〈i, j〉 ; Accept the correspondence

end

3.2 Robust Estimation of the Rigid Transformation Between Maps

Given any set of correspondences, it is well known that a closed-form solution
exists for finding the rigid transformation between the maps that is optimal, in
the least-minimum-square-error (LMSE) sense [10]. Let this method be denoted
by T (Ci) �→ xi, where xi = [xi yi φi]T is the optimal transformation according
to correspondences Ci. However, applying this estimation directly to the whole
set of detected correspondences is not convenient, since a wrong correspondence
may lead to a large error in the estimated transformation. That is the reason why
we propose here an additional RANSAC-based [11] step for robustly estimating
the map transformation, what is described in Table 2. In short, we randomly
choose a pair of correspondences (the minimum number required), and then all
the correspondences that are consistent with the initial estimation are included,
providing a robust estimate xi. Since the choice for the pair of initial corre-
spondences is determinant for the rest of accepted ones, we repeat this process
a number of times M , each time with a randomly chosen initial pair of corre-
spondences. Additionally, only those sets of correspondences of a minimum size
Cmin (e.g. 8 correspondences) are considered, achieving improved consistency in
the results. In this way, we obtain a set of robust estimates X = {xi}L

i=1. If we
assume the correspondence between features to be an unknown random variable,
this set X can be interpreted as a sample-based (Monte-Carlo) approximation
to the probability density of the map transformation, which can be used, for
example, for fitting a Gaussian distribution for the maps transformation.
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Table 2. The method for robustly estimating the transformation

algorithm robustEstimation(C) �→ X
X = ∅
for i = 1..M do ; Repeat the simulation M times.

randomly choose Ci = {c1, c2} ⊂ C, such as c1 
= c2

xi = T (Ci)
for each cj ∈ C − Ci

if ‖T (Ci ∪ cj) − xi‖ < τ ; If the new estimation is consistent
Ci = Ci ∪ cj ; according to a given threshold τ ,
xi = T (Ci) ; accept the correspondence cj .

if |Ci| ≥ Cmin

X = X ∪ xi

end

4 Experimental Results and Conclusions

We have applied our method to two pairs of maps obtained from real data gath-
ered by a mobile robot in the same physical places, but at different times. As
shown in Fig. 3, the pairs of image maps contain some differences, especially the
pair in Fig. 3(a) where several pieces of furniture were moved within the room.
The computed map transformations are shown in Fig. 3(c)–(f). It is noticeable
the high robustness when establishing correspondences, what is reflected in the
low uncertainty of the estimations: below 15 cm. for the translation, and less than
2 degrees for the orientation. The estimation process takes 600ms and 807ms for
the two pair of maps, respectively, for a number of simulations M = 5000. We
have also intensively tested the performance of our approach against two kinds
of realistic errors that can appear in occupancy grids built from range scans [2]:
errors in the ranges themselves, and in the localization of the sensor within the
map. Both errors have been simulated by additive Gaussian noise, characterized
by σrange and σpose, respectively. In this experiment we have arbitrarily cho-
sen a map as reference and synthetically generated a test map with a known
transformation of (Δx, Δy, Δφ) = (1m, 2m, 45o) to compute the mean errors
achieved by our method, both in translation εXY and in orientation εφ. Errors
have been computed for a set of different error levels σrange and σpose. We have
also contrasted our estimation with that from the LMSE method applied on the
whole set of correspondences. All these results are summarized in Fig. 4, where
it should be highlighted the small absolute errors achieved over the wide range
of noise levels and for both kind of errors, in the range values, Fig. 4(d)-(f), and
in the poses, Fig. 4(g)-(i). In all the cases the mean errors are below 10 cm. and
0.5 degrees. In comparison with the LMSE estimate, our method achieves an
improvement of above one order of magnitude, clearly justifying the integration
of the robust step in the process.

We have also computed the estimation based on the normalized cross cor-
relation (NCC) for comparison purposes (see Fig. 4(j)), where it is clear that
the maximum value of the NCC reveals the transformation between the maps,
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Fig. 3. Matching results from our method for two pairs of real maps, shown in (a)–
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estimated translations and orientations have been separated for ease of visualization.
Gaussian fit is shown for the translation estimations and a 95% confidence interval.
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but it also assigns high values to many wrong transformations, which contrasts
with the results from our approach in Fig. 4(k). Regarding computation time, it
takes approximately 420 sec. to evaluate the NCC in a 3.2GHz Pentium 4 using
a straightforward implementation, whereas out method takes less than 1 sec.

To summarize, in this paper we have presented a new method for robust
matching of occupancy grid-maps, a technique with many potential applica-
tions in robotics. Our approach has been devised from a image-registration view-
point, hence we introduce a new feature-point descriptor for easing the matching.
Adding a robust step to the estimation process is shown to provide a significant
improvement in the overall precision. Future work should be aimed to provide
a more detailed comparison between the performance attainable from different
feature-point detectors, and to integrate this work into robotic mapping frame-
works.
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