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 Abstract—Most successful works in Simultaneous 
Localization and Mapping (SLAM) aim to build a metric map 
under a probabilistic viewpoint employing Bayesian filtering 
techniques. This work introduces a new hybrid metric-
topological approach, where the aim is to reconstruct the path 
of the robot in a hybrid continuous-discrete state space which 
naturally combines metric and topological maps. Our 
fundamental contributions are: (i) the estimation of the 
topological path, an improvement similar to that of Rao-
Blackwellized Particle Filters (RBPF) and FastSLAM in the 
field of metric map building; and (ii) the application of 
grounded methods to the abstraction of topology (including 
loop closure) from raw sensor readings. It is remarkable that 
our approach could be still represented as a Bayesian inference 
problem, becoming an extension of purely metric SLAM. 
Besides providing the formal definitions and the basics for our 
approach, we also describe a practical implementation aimed to 
real-time operation. Promising experimental results mapping 
large environments with multiple nested loops (~30.000 m2, 
~2Km robot path) validate our work. 
 
 Index Terms—Mobile robots, Large-scale maps, Loop 
closure, Rao-Blackwellized Particle Filters, SLAM. 

I. INTRODUCTION 

 Simultaneous Localization and Mapping (SLAM) has 
being intensively studied by researchers in the last decade, 
leading to approaches that can be classified into three well-
differentiated paradigms depending on the underlying map 
structure: metric ([5],[12],[24],[26]), topological ([22],[23]), 
or hybrid representations ([7], [15],[28]). 
 In this work we focus on the formulation of hybrid 
metric-topological SLAM in terms of Bayesian estimation 
from all the available robot actions and observations. Thus, 
our major contribution consists of a new formulation of 
hybrid SLAM as the estimation of the sequence of areas the 
robot traverses (topological part) and the local pose of the 
robot within those areas (metric part), providing an estimate 
of the spatial relation between elements, not their absolute 
positions [9]. Our proposal is grounded on the fact that the 
robot will be always at one area, in whose metric scope 
SLAM is a solved problem by standard methods, either 
Extended Kalman Filters [5] or RBPF [6]. As long as the 
size of the areas (local maps) is kept bounded, so does the 
complexity of the local SLAM method. In this paper we 
discuss issues such detecting when the robot goes out of the 
current area, enters a new one, or reenters a previously 
known one (loop closure). In our proposal two estimation 
processes are carried out concurrently: (i) the robot pose 

relative to the current area (metric path), and (ii) the 
sequence of areas the robot goes through (topological path). 
Under this perspective, loop closure becomes finding a 
partition in the sequence of all the areas in the map [22]. 

 The meaning of the topological map in this work 
strongly differs from the one considered in many other 
works. In the literature we can find works that consider 
distinctive places as nodes ([4],[15]), while others cut the 
map into disjoint areas ([7],[28]). Our model is closer to 
those of appearance-based maps ([2],[30]), where 
topological nodes are the result of abstracting low-level 
robot observations gathered at a given area. Actually, the 
size of areas will be automatically determined by the nature 
of sensors, more concretely, by the covisibility between 
observations [2]. As an example, observations gathered by a 
laser scanner within a room may be grouped into a single 
area, but using a narrow field-of-view camera may generate 
a number of areas instead. Furthermore, partitioning 
observations, as distinct from the physical space, implies 
that the same location may be assigned different relative 
coordinates, one for each area in the topological map. 

In addition to providing a unified theoretical support for 
hybrid metric-topological SLAM (which we call HMT-
SLAM), in this work we propose a practical implementation 
framework. This system processes local metric information 
in real-time by means of a particle filter with a constant-time 
complexity, while the topological structure of the 
environment is estimated in an anytime fashion. 
 We claim that the present work is a promising base for 
integrating many previous separate contributions, such as: 
• Rao-Blackwellized Particle Filters (RBPF) for mapping, 

which suffer major problems when dealing with large or 
nested loops, requiring a dynamic number of particles 
[8] or artifacts to prevent the loss of diversity [25], 
respectively. These problems are the result of map 
building under a global-coordinate approach. 

• In the context of occupancy grid map building, 
advanced techniques ([10],[11]) are required to reduce 
the memory requirements of RBPF mapping, due to the 
maintenance of a global map in each particle. In our 
approach each particle keeps a map of the current area 
only, hence achieving improved scalability with a great 
reduction in storage requirements. 

• Appearance-based map partitioning methods ([2],[30]) 
have never been integrated before into a hybrid SLAM 
framework, whereas they naturally fit into the induction 
of topological areas from metric observations. 



• Global localization (the robot “awakening” problem), 
can be managed in a more efficient manner in our 
hybrid state-space than within a global metric map. The 
robot can first localize in which area it is, and then try 
to estimate its metric within that area. However, this 
issue will not be addressed here for the sake of brevity. 

 
 The rest of this paper is structured as follows. In section 
II we examine previous works related to both metric and 
topological SLAM. Next, we provide the probabilistic 
foundations of our approach, while some of its relevant 
elements are discussed in section IV. A practical system that 
implements our ideas is presented in section V, and 
experimental results with real robots in large-scale scenarios 
are discussed in section VI. Finally, some conclusions and 
future work are outlined. 

II. PREVIOUS RESEARCH 

 In the following we briefly discuss previous works in 
the fields of metric, topological, and hierarchical mapping, 
highlighting their relation with the present paper. 
 Metric approaches ([12],[17],[19],[20],[24],[26]) aim to 
reconstruct the spatial arrangement of map elements, in the 
form of landmark maps [19], occupancy grids [20], or sets 
of range scans [17] (please refer to [27] for a more detailed 
classification). Although some non-probabilistic methods 
have been proposed to build metric maps ([12],[17]), the 
vast majority of works on metric SLAM rely on a 
probabilistic representation of the robot pose and the map, 
where Bayesian filtering estimates the corresponding 
probability distributions [5]. The hardest problem in these 
methods is data association (that is, establishing 
correspondences among observations and the map) [21], a 
problem that aggravates when the robot closes a loop: a 
previously known place is revisited through a new and 
unknown path. Establishing wrong correspondences greatly 
compromises the consistency of estimated maps. Since the 
uncertainty in the robot pose and the map increases as the 
robot explores new areas, the hardness of finding the correct 
data association increases with the scale of maps. Recently, 
this problem has been successfully addressed from a new 
viewpoint: estimating the whole robot path, instead of only 
the most recent pose. We can then apply a convenient 
factorization, called Rao-Blackwellization in Estimation 
Theory [6], that has enabled the mapping of relatively large-
sized environments with both occupancy grids (Rao-
Blackwellized Particle Filters [10]) and landmark maps 
(FastSLAM [18]). However, the number of particles 
required to close a loop increases with its length, which may 
eventually turns into a storage capacity limitation since each 
particle must carry a hypothesis of the whole map. 
 Building a topological map is an attractive alternative to 
metric maps. Among other properties, they have reduced 
storage requirements and can be easily integrated with 
symbolic planning. Although Bayesian estimation has been 
reported for these maps [22], it is assumed there that the 
robot can detect whether it is close to one of a set of 
“distinctive” places, which are represented as nodes in the 

map. We think this is a too restrictive assumption where the 
diversity of metric information is lost. A more appealing 
approach is to consider hybrid maps, where topological 
nodes contain local metric information 
([3],[7],[14],[15],[16]). However, loop closure for these 
maps in previous works has been considered only under the 
metric point-of-view, i.e. by finding the global coordinates 
transformation compatible with the loop closure [7]. For this 
reason the association problem for observations remains 
being a major issue, which can be simplified by inferring 
probabilistic topological loop closure hypotheses [22]. Our 
approach turns the landmark-to-landmark data association 
problem into a node-to-node one, which we claim is an 
easier problem due to its reduced ambiguity. Additionally, to 
the best of our knowledge no previous work has proposed 
the probabilistic estimation of the topological path followed 
by the robot, which may be seen as the dual of Rao-
Blackwellization for metric mapping. 

III. PROBABILISTIC FOUNDATIONS OF HMT-SLAM 

 The problem of metric SLAM is stated as to 
simultaneously estimate the map m and the robot pose xt at 
any given instant of time t. Set out as a Bayesian filtering 
problem conditioned to the sequence of robot actions 
ut={u1,…,ut} and observations zt={z1,…,zt} [5], the 
probability distribution to be estimated is 1: 

( ), ,t t
tp x m u z  (1) 

 Under this formulation of the problem, all the 
observations zt depend on the whole map m. This is in 
contrast with the “locality” of real observations, which 
typically catch a small part of the environment at once. 
 Our proposal for a hybrid SLAM builds upon the 
assumption that the map can be conveniently divided into a 
set of n metric sub-maps {iM}i=1..n, which we will call areas. 
Each area has its own coordinate reference frame, while 
edges  {ab

∆} between sub-maps define the transformation 
between different frames leading to the topological view of 
the map. Thus, a hybrid map is a 2-tuple: 

{ } { } 1..1.. 1..
,k ab

a nk n b n
m == =

= ∆M  (2) 

 Accordingly, the robot pose becomes a hybrid metric-
topological (HMT) variable, stated as st=(xt,γt), where the 
discrete part γt identifies a sub-map (area), and the 
continuous xt is the pose relative to the coordinate reference 
of the area tγM .  
 Given the above definition of a HMT map m, we state 
the HMT-SLAM problem as the estimation of the following 
distribution: 

( ), ,t t tp s m u o  (3) 

where ot={o1,…,ot} is the sequence of hybrid observations 
ot=(zt, ψt). The purpose behind defining ot as hybrid is to 
conveniently separate metric observations zt, and area 
dependant, qualitative observations ψt (this division is 
especially useful when facing the problem of global 

                                                           
1 For clarity, throughout this paper we will denote sequences of variables of 
the form x1:k={x1,…,xk} as xk. 



localization). The estimation of the topological and metric 
paths enables the Rao-Blackwellization of the joint map-
path estimation [6]. It must be highlighted the clear 
advantage of this model to face the hard problem of loop 
closure: while metric SLAM methods aim to compute the 
exact coordinates of the robot after traversing a cycle (i.e. 
computing continuous variables), closing the loop in the 
topological scope is equivalent to establishing a partition in 
the (discrete) space of topological areas. This issue was 
rigorously discussed elsewhere [22]. One could argue that 
the metric elements in the HMT map (edges ab

∆ between 
areas) still have to be considered. However, they become 
analytically tractable when conditioned to hypotheses of 
topological-level loop closure: if we factorize (3) through 
the definition of conditional probability: 

( ) ( ) ( ), , , , ,t t t t t t t t tp s m u o p s u o p m s u o=  (4)

the map m becomes analytically tractable given the hybrid 
robot path st ([6],[18]). Next, we take advantage of having 
defined the map as a set of areas. Ideally, we could expect 
this partitioning to achieve the independence of observations 
within different areas, as illustrated in the DBN of Fig. 1. 
Mathematically, from this follows the conditional 
independence between robot path portions from different 
partitions, conditioned to the starting pose of the robot into 
each sub-map: 

 Unfortunately, in practice, partitioning the map will 
rarely generate strictly independent observations between 
sub-maps. However, we will still assume that (5) holds as an 
approximation while only a small quantity of information is 
lost. This enables the following factorization of (4): 

( )
( ) ( )

( ) ( ) { } { }( )
1

1 1

, ,

, , ,

, , , , , ,

t t t

n
k t t t k t t t

k
n n

k t t t k k t t t ab k k t t t

k k

p s m u o

p s u o p m s u o

p s u o p s u o p s u o

=

= =

≅

=

∆

∏

∏ ∏ M M

(6)

 This theoretical result suggests that HTM-SLAM can be 
achieved through a set of n separate estimation processes, 
one for the robot path within each area. Then, map 
hypotheses are computed according to the corresponding 
estimated paths. Since the robot state st is a Markov process, 
we can sequentially estimate it via the Bayes rule: 

( )

( ) ( ) ( )

Posterior

Observation likelihood

1 1 1 1 1
1 1 1

Transition model Prior

,

, , , ,

Bayes
t t

t

t t t t t t
t t t t t

p s u o

p o u o p s s o u p s u o ds− − − − −
− − −

∝

∫
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(7)

 Certainly, an exact solution for the integral above is not 
available in the general case, forcing an approximate 
approach. Furthermore, the intractable growth in the number 
of possible topological paths [22] imposes a sample based 
approximation. Notice that the estimated path st defines the 
topological structure of the HMT map, as illustrated with 
some examples in Fig. 2. In this work we compute (7) by 
means of a Sequential Importance Resampling (SIR) filter 
[6].  
 Assume that the distribution of the robot path until the 
last time step (t-1) is available as a set of M particles: 

{ } ( )1,[ ] 1 1 1

1..
,t i t t t

i M
s p s u o− − − −

=
∼  (8) 

 The filter in (7) can be implemented as a prediction step 
followed by the corresponding particle weights update: 

{ } ( ) ( )[ ] 1 [ ] [ ] [ ] [ ]
11..

,    , ,i t t i i i i
t t t t t ti M

s p s u o p o s mω ω−
−=

∝∼ (9)

 Next, a selective resampling step is required to alleviate 
the particle depletion problem [1]. Recalling the Markov 
assumption, we can now extend the robot path estimation as: 

{ },[ ] 1,[ ] [ ],t i t i i
ts s s−�  (10)

and repeat all the steps in the SIR filter recursively over 
time. Remember that Rao-Blackwellization grounds on the 
map distribution to be analytically computable from (10), 
thus each particle carries its own map estimation that is 
updated independently. In our context this means that each 
particle carries a hypothesis of the current area’s metric map 
only, since previous local sub-maps are removed from the 
history of particles each time the robot enters a new area. It 
may be sometimes desirable to compute the discrete 
probability mass function (PMF) of the topological path γ t, 
e.g. for visualizing existing topological structure hypotheses. 
This operation can be simply achieved by summation over 
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Fig. 1 The graphical model for HMT-SLAM. Here segments of the robot 
path are conditionally independent given the starting pose from each 
segment. The relative pose between areas 

 ij
∆ is a random variable but 

defined as an analytical function of robot poses. 
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Sequence of traversed areas

Some topological hypotheses

{ }0,1, 2,3, 4tγ =

{ }0,1, 2,3,0tγ =

{ }0,1, 2,3,1tγ =

{ }Partition: 0,1, 2,3, 4

{ }{ }Partition: 0, 4 ,1, 2,3

{ }{ }Partition: 0, 1, 4 , 2,3
 

Fig. 2 Our approach takes the sequence of areas traversed by the robot (on 
the top), and estimates the topological structure of the environment 

according to the feasibility of possible partitions in that sequence. The 
bottom graphs show some examples of potential topologies and associated 

topological paths γ t. 



all the HMT path hypotheses: 

( ) ( )

{ }
Particle
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 It is worth mentioning that virtually all the complexity 
in our approach rests on the drawing process from the 
distribution (9), mainly due to the estimation of the 
topological path. An implementation is proposed in a later 
section to deal with the complexity of this task in real-time 
applications, by means of dividing it into small, parallel sub-
processes, and by postponing some operations. 

IV. RELEVANT ELEMENTS OF HMT-SLAM 

 After exposing the theoretical foundations of our 
Bayesian approach to hybrid mapping, in this section we 
further clarify some key elements from this framework. 

A. Partitioning the map 
 The hybrid map m is an annotated graph defined by the 
2-tuple in (2), where nodes are the set of areas {1M,…,nM } 
and edges represent coordinates transformation between 
them. Let ab∆ be the transformation of coordinates from the 
area aM into the reference system of bM. Provided for 
convenience that the first pose within each sub-map is the 
local coordinate reference, and being û the inverse pose 
composition operator, we have: 

( ) ( )0 0, ,ab t t a b t tp u o p x x u o∆ � û  (12)

 In this work we compute this distribution by 
marginalization over all the particles: 

( )
( ) ( )

( )

0 0

0 0

Particle
aproximation

[ ] [ ] [ ]
0 0 0 0

,

, , , , ,
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a b t t t t t t t

a b a i b i i
t

i

p x x u o

p x x s m u o p s m u o ds dm

x x x xδ ω

=

≅ −
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(13)

which is a point mass approximation directly available from 
the RBPF employed for local metric SLAM. 
 The proposed model of sub-maps and coordinate 
transformations between them has been reported in other 
works ([7],[13],[14]), though we also propose a well 
grounded method that minimizes the loss of information in 
the map partitioning process: the minimum normalized-cut 
(min-Ncut) in the graph of observations [2],[30]. This is in 
contrast with previous works, which typically assume 
heuristic criteria. 
 To compute this partitioning, a weighted undirected 
graph is built where nodes are the robot observations and 
edge weights represent the covisibility between them. 
Periodically it is applied a highly-efficient spectral bisection 
algorithm to obtain the clustering that minimizes a given 
measure of independence (namely, the normalized cut). 
Notice that this bisection should be accepted only if the 
measurement rises over a given threshold which states the 
required independence between sub-maps. The partitioning 
process was already reported in detail elsewhere [2]. 

B. Uncertainty dereference/projection 

 An issue in any metric-topological approach to SLAM 
is the projection of uncertainty through different coordinate 
references. This process takes any pose distribution p(ax) 
referenced to a given area aM, and computes its distribution 
p(bx) relative to a second reference sub-map bM. The 
inverse operation is uncertainty dereferencing, which is a 
fundamental mechanism in our framework: each time the 
robot enters a new area, its pose uncertainty is dereferenced 
into the new coordinate system, as graphically illustrated in 
Fig. 3. This involves a pose inverse compounding operation: 

b a abx x= ∆û  (14)
 Referencing uncertainty to the local frame provides a 
major advance over non-hybrid approaches to SLAM: the 
farther the robot is from the coordinate reference, the more 
complicated it becomes to model the pose probability 
distribution. For EKF methods this entails a raise of 
linearization and non-Gaussianity errors, whereas in RBPFs 
more particles are required to assure bounded approximation 
errors. Actually, these problems are a consequence of 
aiming to estimate global coordinates, which is avoided 
here. 
 The opposite situation (projecting a pose distribution 
towards a different area across the topological graph) is 
carried out by the pose composition operator∆ : 

a ab bx x= ∆∆  (15)
which should be extended recursively if there are multiple 
transformations (edges) between the origin and target areas. 
Notice that, in general, many possible topological paths may 
exist between a given pair of areas, thus many different and 
probably inconsistent transformations are simultaneously 
applicable. We have adopted the solution reported in [3], 
where the Dijkstra algorithm is applied for finding the 
“shortest” topological path, in terms of smallest uncertainty. 
 This uncertainty projection has a direct application in 
finding absolute coordinates, a required step in computing a 
global map. Although our mapping approach does not need 
it at all, computing a global map relative to an arbitrary 
reference still is an appealing way of visualizing maps 
readable to humans, hence the interest in their construction. 
Experimental results in next sections show examples of such 
global maps, where inconsistencies may exist due to the 
problem mentioned above. One can devise optimization 
methods to reduce such inconsistencies [3] by means of 
ideas previously applied to consistent scan matching [17], 
but they are not applied here. 
 In our current implementation, uncertainty propagation 
in (14)-(15) is performed by Monte Carlo simulations, since 
distributions are already given as discrete samples from the 
RBPF. In the case of EKF-based SLAM, approximate 
closed-form solutions exist [7]. 

V. IMPLEMENTATION FRAMEWORK 

 In section III we introduced the theoretic foundations of 
HMT-SLAM. Next a practical framework is presented 
which implements those ideas while keeping in mind that a 
mobile robot may demand accurate metric localization in 
real-time (e.g. for navigation or manipulation purposes), 
whereas maintaining the consistency of the topological map, 



thus it, solving loop closures, may be dealt in an any-time 
fashion. 
 The system is sketched in Fig. 4, where it can be seen 
the layered structure: metric local SLAM is performed in the 
low level, while more abstract (topological) representations 
are managed in upper levels. The inputs to the system are 
actions and observations from the robot, which are kept in a 
time-stamp-ordered queue until they can be processed. 
Within the system, there are a number of processes running 
concurrently which interact by reading and writing 
operations into the three levels, illustrated in Fig. 4: the local 
metric map of the current area, the sequence of traversed 
areas, and the space of topological path hypotheses. It must 
be remarked the parallel nature of the system, since the 
processes do not run in a predefined, sequential order. Next 
we describe the concurrent processes in the system and their 
relations with the different level described above: 
• Metric SLAM: This process handles the robot localization 

and mapping within the local metric map for the current 
area, by processing actions and observations and 
integrating them into the Bayes filter. RBPFs represent an 

attractive choice here due to their constant-time operation, 
an essential feature to enable reliable real time low-level 
SLAM. This process is related to the estimation of the 
metric part of the robot path described in (7)-(10). 

• Area Abstraction Mechanism (AAM): Appearance-based 
methods are applied here to detect clusters of 
(approximately) independent observations in the sequence 
gathered by the robot ([2],[30]), i.e. whether the robot has 
entered into a new area. In such an event, observations 
from the last area are abstracted into a new area in the 
upper level. In our current implementation we assume that 
the partitioning of areas does not change with time, which 
does not represent a hurdle since the partitioning method 
is robust enough to produce approximately the same 
clusters of a given area independently of the robot path 
across it. 

• Topological Space Bayesian Inference (TSBI): This 
process assigns values to the topological path γ t of the 
robot according to the current map hypotheses [22], and is 
related to the topological part of the drawing process in 
(9). In our current implementation the inference on the 
topological path γ t is postponed until the AAM algorithm 
starts a new sub-map. We have found that by doing so, the 
TSBI process can be performed through a simple 
maximum likelihood estimation (MLE) approach: 

( )

( ) ( ) ( )

[ ],* 1 1,[ ] [ ]

1 1,[ ] [ ] 1,[ ] [ ]

arg max , , ,

 , , , , ,

t

i t t t i i
t t

Bayes
t t t i i t i i

t t k t
k

P u o s m

P u o s m P p o s m

γ
γ γ

γ γ γ

− −

− − −

=

∝ ∏

 
(16)

where no information about the prior P(γt) is assumed, i.e. 
we consider a uniform distribution over all paths. The 
method above simplifies the implementation, since (16) 
can be easily evaluated pointwise, while still performing 
well for large-scale map building. However, this 
simplification is not suitable for global HMT localization, 
an issue not addressed in the present work. 

• Topological Loop Closure Acceptance (TLCA): Due to 
computation and storage limitations, it may be required 
that the robot forgets part of its topological path γ t. The 
TLCA process performs this task, which is equivalent to 
accepting part of the topological structure hypothesis as 
correct. However, in practice this can be done for highly 
dominant (or unique) hypotheses, which can be 
determined by evaluating (11), hence the loss of 
information shall be negligible in most cases. 

• Maps Consistency Optimization (MCO): This task is in 
charge of optimizing the relative pose of observations 
within each sub-map. The method from Lu and Milios 
[17], running in O(n2) with the map size, is appropriate 
here since the size of the local maps is bounded. 

• Real Time Localization (RTL): This process guarantees an 
estimation of the robot position in a timely fashion. If the 
input queue is empty, the best pose estimation is st, 
already updated by the SLAM algorithm. However, if 
there is pending actions in the queue, the RTL computes 
the prior distribution, e.g. p(st+1| st,ut+1), as a more updated 
estimation of the actual robot pose. This is clearly not the 
optimal solution, but it can be easily updated in real time. 
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99.97% confidence intervals for approximate Gaussian distributions. 
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 Although our implementation does not exploit all the 
potential of the developed theoretical framework (mostly 
due to the postponed topological loop-closure through 
maximum likelihood estimation), it has demonstrated its 
suitability for large-scale map building of complex 
environments. 

VI. EXPERIMENTAL VALIDATION 

 We have tested our mapping framework with two 
different data sets, both with odometry readings and laser 
range scans in large-scale planar scenarios. One data set was 
gathered by the authors at the university of Malaga, and 
comprises almost 5000 laser scans collected along a 1.9Km 
path. The other data set was recorded at Edmonton 
Convention Centre by Nick Roy, and it is freely available 
online. Please, consider viewing the videos of the 
experiments [29] to get a better grasp of the results. 
 To compare the efficiency of our approach with 
previous methods we have also built the corresponding 
global metric maps with a highly efficient RBPF technique 
proposed in [10] for global metric mapping. The 
performance in both computation time and memory 
requirements is summarized in Table I. Results are for a 
2.0GHz Pentium M (1Gb RAM), and for occupancy grid 
maps with a cell size of 12cm. 

TABLE I 
PERFORMANCE COMPARISON BETWEEN GLOBAL RBPF-MAPPING AND OUR 

APPROACH FOR HMT-SLAM 

 Memory 
requirements 

Computation 
time 

                     Method 
Data set                     _ 

Global 
RBPF 

HMT-
SLAM 

Global 
RBPF 

HMT-
SLAM 

Edmonton 84.22 Mb 27.97 Mb 39 min. 7 min. 
Malaga 196.58 Mb 35.88 Mb 103 min. 24 min. 

 It is noticeable that HMT-SLAM outperforms global 
RBPF for both data sets. The improvement in the memory 
requirements follows from the fact that particles in our 
approach carry a hypothesis of the local metric map only, 
whereas in RBPF those hypotheses are for the whole global 
map. Therefore, the advantage of HMT maps becomes more 
and more relevant for increasingly larger environments. 
Regarding the lower computation time of our approach, it is 
a direct consequence of the reduced number of particles. 
However, by using a few particles only in local SLAM (we 
use 15 particles), our approach can attain a much better 
representation of the uncertainty (through Monte Carlo 
simulations of the uncertainty projection in (15)) than the 
one attainable by a global RBPF with a practical number of 
particles (e.g. less than 50). This turns into more precise 
loop closures in HMT-SLAM than in metric RBPF. 
 The map estimation before and after a loop closure are 
shown in Fig. 5(a)-(b) for the Malaga data set. In this 
situation, the robot enters a new area, labeled ‘11’, leaving 
the previous area ‘10’. Then, the dominant topological path 
hypothesis becomes that of establishing the partition 
{‘1’,‘11’}, that is, the most likely explanation for robot 
observations is that area ‘11’ actually corresponds with the 
area ‘1’. It can be appreciated in Fig. 5(c)-(d) how the loop 
closure affects the pose uncertainty of surrounding areas due 

to the introduction of a new edge that modifies the Dijkstra 
shortest paths employed to generate those global maps 
(notice that ellipses in the figure exaggerate the actual 
uncertainty by a factor of 5 for ease of visualization). The 
final HMT maps built from the Malaga and Edmonton data 
sets are plotted in Fig. 5(e)-(f), respectively, as global maps 
where global coordinate references have been arbitrarily set 
to the first nodes in each map. Although GPS readings are 
not available to measure absolute localization errors, our 
work is not focused on obtaining an accurate global metric 
map, but on reliably estimating the topological structure of 
the environment, which has been successfully carried out in 
both experiments. 

VII. CONCLUSIONS AND FUTURE WORK 

 In this work we have introduced a new viewpoint for 
solving the problem of large-scale SLAM which consists of 
estimating the hybrid metric-topological (HMT) path 
followed by the robot. It has been demonstrated that our 
approximation is supported by the probabilistic structure of 
the SLAM problem under weak assumptions. 
 We have also presented a relatively simple 
implementation of our ideas in the form of a real-time/any-
time system. This implementation has demonstrated to be 
efficient for mapping large scale environments with multiple 
loops, but further research is needed to fully exploit the 
versatility of the HMT-SLAM framework against harder 
problems. For example, mapping highly ambiguous 
environments, or efficiently solving the robot awakening 
problem within large (even partially unknown) 
environments, are issues that can be hardly dealt with 
existing methods. We believe that the proposed paradigm of 
HMT-SLAM is a promising approach for these problems. 
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Fig. 5 (a)-(b) The map just before and after closing a loop by merging nodes {1, 11}. It is shown in (c)-(d) how this topological loop closure reduces the 
uncertainty in the position of surrounding nodes (uncertainty is represented by 95% confidence intervals, where uncertainty has been exaggerated by a 

factor of 5 for clarity). The final global map obtained for the Malaga data set is shown in (e), and in (f) overlapped with a satellite photo of the actual place. 
The graph (g) shows the global map obtained with our method for the Edmonton data set. The memory requirements of our approach in contrast with those 

of a global metric RBPF-mapping are also plotted in (h) for the Malaga data set. 
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