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 Abstract – One of the main elements of probabilistic 
localization and SLAM is the probabilistic sensor model (also 
known as the observation likelihood function). However, when 
dealing with very accurate sensors like laser range scanners, 
most approaches artificially inflate the uncertainty in the range 
measurements and assume conditional independence between 
the individual ranges of the scan to compute this likelihood 
function. In this paper we propose an alternative method where 
each sample in the scan can contribute an accurate estimation 
according to both its real uncertainty and its compatible 
correspondences with a given map. These likelihood values of 
individual measurements are fused via a Linear Opinion Pool 
(LOP), a method from Consensus Theory. Our approach 
results in a more precise likelihood function than others and 
excels in robustness in dynamic environments. To validate our 
research we provide systematic comparisons with other 
proposals in the context of localization with particle filters. 
 
 Index Terms – Probabilistic robotics, scan matching, global 
localization, particle filters, Bayesian filtering. 
 

I. INTRODUCTION 

 The problems of global localization and Simultaneous 
Localization and Mapping (SLAM) share the same 
probabilistic model, where unobserved variables are 
estimated from noisy sensor measurements ([8],[12]) 
through Bayesian filtering. Basically, the distribution of 
unknown variables is estimated through the Bayes rule, 
which states how to update a prior belief of the state of the 
system p(x) if we are given a new observation z: 

( ) ( )N ( )
PriorPosterior Observation

 likelihood

|  |p x z p x p z x∝��	�
 ��	�

 

(1) 

A fundamental component of Bayesian filtering is the 
observation likelihood, stated by p(z|x) in (1), since it 
contributes new information to the estimation. 
Unfortunately, the likelihood of an observation given a robot 
pose, namely the sensor model p(z|x), can not be computed 
exactly. Strictly speaking, measurements depend on the 
sensor pose into the environment, but also on the 
environment itself. Formally, we could define the sensor 
model as p(z|x,m*), where m* represents the real 
environment. Unfortunately, the ground truth m* is 
unknown, thus the closest that we can be to this model is to 
consider p(z|x,m) as the sensor model, where we are given 
an estimation of the map, p(m). This approximation is 
assumed in all works on localization and SLAM, and it is 
unavoidable. Its effects can be ignored for non-accurate 

sensors (i.e. sonars), but they become a substantial problem 
for accurate ones: small discrepancies between the map and 
the real world lead to negligible and useless likelihood 
values. Previous works avoid this problem by artificially 
inflating the uncertainty in measurements to account for the 
uncertainty in the map (up to two orders of magnitude above 
the actual sensor uncertainty).  

The common approach to integrate the likelihood values 
of individual range measurements of a sensor is assuming 
conditional independence between them, that is, computing 
the product of the likelihoods of each range (as illustrated in 
the upper graphs of Fig. 1). The problem with this technique 
becomes patent in dynamic environments, where there are 
significant differences between the expected and the actual 
measurements. In the example of Fig. 1 this is schematically 
represented by two close measures and a discrepant one on 
the left. The effect in the fused likelihood following the 
usual independence assumption is usually a high likelihood 
at robot poses that are actually inconsistent with all the 
measurements (refer to the upper graphs of Fig. 1). 
 The purpose of this work is to provide a more 
appropriate approximation of the likelihood function for 
highly accurate sensors, concretely for laser range-finders. 
We propose to consider individual likelihood values as 

( )inflated ,i

i

p z x m∏( )inflated ,ip z x m

( ),ip z x m ( ),i
i

i
w p z x m∑
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Fig. 1 The likelihood of individual range measurements zi may be 
contradictory in dynamic or partially known environments. The usual 

method to fuse them is to inflate artificially the measurement uncertainty, to 
assume independence, and then compute their product (graphs on the top). 

The result may be peaked on robot poses actually inconsistent with 
observations. In this work we employ a method from Consensus Theory to 

fuse the high-precision likelihood functions of individual measurements 
(bottom graphs), which leads to an accurate and robust localization. 
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“opinions” about the final fused likelihood, which can then 
be calculated by means of fusion methods from Consensus 
Theory [9]. In this work we address this fusion via a Linear 
Opinion Pool (LOP), the most simple and intuitive method 
from consensus fusion techniques [1]. The resulting 
approximation of the likelihood function, that we name here 
Range Scan Likelihood Consensus (RSLC), allows 
considering the actual (very low) uncertainty of the sensor 
instead of some inflated, and thus distorted, version. We 
claim that our approximation leads to more accurate and 
dependable pose estimations than existing methods. The 
advantage of using average combination rules in the 
presence of outliers is well known in the field of robust 
sensor fusion ([3],[14]). To the best of our knowledge this 
work integrates for the first time these ideas into 
probabilistic robotics. 
 For simplicity, in this paper we focus on the problem of 
mobile robot localization only, although our approach can 
also be directly applied to SLAM without modifications. 
Since we formulate the problem in terms of raw range scans, 
the methods and ideas presented here are related to 
probabilistic scan matching techniques. 

The rest of this paper is outlined as follows. In the next 
section we review related works in literature. Next, we set 
out the localization problem as a Bayesian filtering process, 
and in section IV we expose our approximation to 
computing the likelihood of observations. Finally, we 
present experimental results that show the performance of 
the RSLC method on a real robot and compare it to previous 
techniques. 

II. RELATED WORKS  

Providing an observation likelihood function for 
accurate range scan sensors has been a challenging issue for 
all probabilistic approaches to localization and map 
building. The most physically plausible likelihood function 
is the beam model (BM) ([21],[13]), where each range in the 
scan is assumed to be corrupted with zero-mean, 
independent identically distributed (iid) Gaussian noise. 
This assumption allows the following factorization: 

( ) ( )| , | ,i

i

p z x m p z x m=∏  (2) 

where z represents the whole scan, zi represents individual 
ranges, m is the estimated map, and the expected value of 
each range (the mean of the corresponding Gaussian 
distribution) is computed by performing ray-tracing in the 
grid-map. The BM has important drawbacks in practice [21]. 
Firstly, the resulting distribution is extremely peaked for 
accurate sensors, which indicates an extremely small 
uncertainty, but any tiny error in the map with respect to the 
real world makes the distribution to diverge from the ground 
truth. Also, and as a consequence of the previous drawback, 
if just one measurement out of the whole scan were affected 
by dynamic obstacles (those non-modelled in the map) the 
joint distribution would become practically zero. The 
following solutions have been proposed in the literature to 
overcome the problems with the BM: (i) to inflate artificially 
the uncertainty in the range measurements [22], and (ii) to 

preprocess ranges in order to remove those clearly caused by 
dynamic obstacles [6]. 

An alternative to the BM is the likelihood field (LF), an 
efficient approximation that avoids the costly ray-tracing 
operation by taking into account the 2D coordinates of the 
sensed points, and assigning likelihood values according to 
their nearness to correspondences in the map [20]. This 
model also inflates the sensor measurement uncertainty, 
typically up to values around one meter. In spite of its lack 
of a physical foundation, it has been successfully applied to 
localization and mapping ([10],[12]).  

In both techniques, BM and LF, it is a common practice 
to use a small fraction of the ranges available in scans, 
achieving a speed-up in computation times and making 
methods more resistant to unmodelled obstacles at the cost 
of suboptimal solutions. Please refer to [21] for a more 
detailed discussion about these methods. 

In the context of SLAM with Rao-Blackwellized 
Particle Filters ([4],[12]), an interesting alternative is 
proposed in [10]. There a Gaussian approximation of the 
likelihood function is computed by evaluating a matching 
function at random robot poses around a local maximum 
obtained from deterministic scan matching. Its dependence 
on the scan matching makes it prone to local minima 
problems (e.g. in long corridors without salient parts). 
 Our work contributes to the vast research field of scan 
matching (SM), since we manage both the observation and 
the map as “points” (more precisely, points distributed 
according to two-dimensional Gaussians). This contrasts 
with the most common employment of occupancy grids [7] 
in probabilistic localization and mapping [10]. Most of the 
best-known scan matching techniques, like the Iterative 
Closest Point (ICP) [2] or the IDC [16], aim to find the pose 
that achieves the optimal matching between scans. In 
general, these methods do no provide a measure of the 
uncertainty in the estimation, and hence they are not directly 
applicable to probabilistic SLAM. There are some 
exceptions, like the method proposed in [15], which 
considers the sensor measurement errors and the residuals 
from the least square error optimization. However, it does 
not take into account the uncertainty in the correspondence 
between points, which typically dominates the overall 
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Fig. 2 A schematic representation of the variables involved in our problem. 
Both the map and the observations are given by a set of normally distributed 
2D points mj. The robot pose xt is used to project the sensor readings into the 

fixed reference system <x,y>. 
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uncertainty. The uncertainty in the correspondences is 
considered in the probabilistic Iterative Correspondence 
(pIC) method [17], but under the restrictive assumption of a 
normally-distributed prior of the robot pose. Other scan 
matching methods [13] do provide an estimation of the pose 
uncertainty, but they rely on the traditional assumption of 
independence and product-based fusion (refer to (2)), thus 
they are not as suited to dynamic environments as ours. 
Unlike iterative methods ([2],[16],[17]), our approach does 
neither require distance thresholds nor is iterative, since all 
the uncertainty in the pose is already represented by an 
arbitrarily distributed prior density. 

 III. PROBLEM STATEMENT 

 The problem of mobile robot localization, including the 
“robot awakening” case [5], consists of estimating the robot 
pose xt from all the observations z1:t={z1,…zt} and actions 
u1:t={u1,…ut} up to the current instant t, given a known map 
distribution p(m). The distribution to estimate is then: 

( )1: 1:| , ,t t tp z u mx  (3) 
 We can apply the Bayes rule on the most recent 
observation zt to obtain the known relation: 

( ) ( ) ( ) ( )
Motion model

1: 1: 1 1 1: 1 1: 1 -1

Observation Prior
likelihood

| , , | , | , | ,t t t t t t t t t t t tp z u m p z m p u p z u d− − − −∝ ∫x x x x x x
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 This expression indicates how to iteratively filter the 
robot pose distribution by means of the likelihood function 
of successive observations. In the next section we provide 
our proposal for the computation of this quantity for laser 
range scanners. But previously, we need to describe the 
notation and the meaning of the involved variables, which 
are graphically represented in Fig. 2 for clarity. 
 We assume a planar robot pose, represented by 
xt=[xt yt φt]T for the time step t. Let the map m be a set of M 
points mj, whose location uncertainty is assumed to be given 
by the Gaussian distributions: 

{ } ( )
1..

,j j
j j m mj M

m m m N
=

= µ Σ∼   

 Regarding the observations zt, which represent points 
from a laser scan, they are described in robot-centric polar 
coordinates ( i

td , i
tθ ): 
{ } { }

1..
    ,i i i i

t t t t ti L
z z z d θ

=
= =   

 Let i
ts  be the Cartesian coordinates of the sensed point 

i
tz  in the global reference system <x,y>, once transformed 

from the mobile system <x’,y’> through: 
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( )
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i i i i
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f d y d

θ φ θ

θ φ θ

⎛ ⎞ ⎛ ⎞+ +
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x
x

x
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 Following a first-order approximation of the uncertainty 
of points i

ts  with normal distributions, that is, 
( ), ,,i t i t i

t s ss N µ Σ∼ , the mean and the covariance matrix for 
each point is obtained by propagating the sensor uncertainty 
through the linearization of the function ( )f ⋅ in (4). 
Assuming that both errors in angle and in range are 
independent and normally distributed with standard 

deviations σθ and σd respectively, we obtain the following 
parameters for the distribution of i

ts : 

( )
2

, ,
2

0
,

0 ii
tt

t i i t i
s t t s f f z zz z

d

f z θσ
σ ==

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
µ x Σ J JT  (5)

where J stands for the Jacobian of the function in (4). 

IV. THE RANGE SCAN LIKELIHOOD CONSENSUS (RSLC) 

 We define the RSLC as a consensus theoretic method 
for fusing the likelihood values of individual ranges of a 
scan. Consensus techniques have been employed in a variety 
of problems where probability values have to be fused, e.g. 
for combining different classification results. In this work 
we address data fusion by means of a particular consensus 
method, the Linear Opinion Pool (LOP) [1].  
 Let p be a probability density to be estimated from a set 
of L opinions {pi}. Then, the general form for a LOP can be 
written as: 

1

L

i i
i

p w p
=

= ∑   

where wi are weight factors for the individual opinions. If 
each pi is a density function, we can assure that the result is 
also a density by imposing the condition: 

1
1

L

i
i

w
=

=∑   

 For the problem we address in this paper, p is the 
likelihood of a whole range scan whereas {pi} is the set of 
likelihood values for individual ranges in the scan. Since we 
can not know in advance whether some likelihood values are 
more confident than others, we will simply assign an equal 
confidence factor to each one (a pessimistic assumption), 
leading to: 

( ) ( )
1

Individual
likelihood values

, ,
L

i
t t t t

i
p z m p z m

=

∝ ∑x x
��	�


 
 

which is a solution consistent with previous research on 
robust classification, where it is shown that this average rule 
for combination outperforms the classical product rule [14] 
(in the context of classifiers combination). 
 It remains to be described how to evaluate the 
individual likelihood values. As previously discussed, the 
problem of the BM method [21] is that inaccuracies in the 
map lead to non-smooth values of the likelihood function, 
with drastic variations for small displacements in the robot 
pose variable xt. As an alternative, we propose a novel 
approximation for this function that, like the LF method 
[20], avoids the costly ray-tracing operation by considering 
only the Cartesian coordinates of sensed points. Concretely, 
we propose to approximate the likelihood of a given range 
measurement i

tz  with the probability that the scanned point 
does correspond to any given map point. Put formally: 

( ) ( )
1

, P ,
M

i
t t ij t j

j
p z m c m

=

∝ ∑x x  (6) 
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where cij represents the correspondence between the map 
point mj and the sensed point si, derived from i

tz  through 
(4)-(5). In the computation of the correspondence 
probabilities we also account for the possibility of a si not 
corresponding with any particular point of the map, which is 
represented by ic ∅ . To compute (6) we use: 

( )P ,ij t i ijc m Cη=x  (7) 

 Here Cij is the probability density of the pair of points si 
and mj to coincide, normalized to the range [0,1]: 

( )
( )

( )
( ),,

,  
j ji i
m mst st

i i i
ij t t t j t

NN

C p s z p m ds∝ ∫
µ Σµ Σ

x

∼∼

�	
��	�

  

which has a closed form solution for Gaussian distributions 
[17]. The constants ηi in (7) are computed to satisfy the law 
of total probability: 

( ) ( )
1
P , P , 1

M

ij t i t
j

c m c m∅
=

+ =∑ x x   

and the probability of no correspondence ic ∅  is given by: 

( ) ( )
1

P , 1
M

i t i j
j

c m C∅
=

= −∏x   

 To gain an insight into these expressions, consider the 
example in Fig. 3(a), where the probability of 
correspondence cij of a sensed point si is computed for a map 
with four points. Provided that the ellipses represent 95% 
confidence intervals, it is apparent that the sensed point si is 
probably a new point (it does not correspond to any point in 
the map). This fact is clearly reflected in Fig. 3(b), where 
this alternative receives the highest probability. Finally, 
according to (6), our method would assign a likelihood of 
( ), 0.2224i

tp z m =x  to the sensed point of this example. 

V. EXPERIMENTAL RESULTS  

 In the following we provide systematic comparisons 
between the proposed method and other two well-known 
approximations: the BM [12] and the LF [20]. We have 
chosen robot localization with particles filter [5] as the 
framework for the tests. We also suggest the reader to view 
the videos available online in [18].  

A. Synthetic Experiments 
 In the first part of the synthetic experiments, the robot 
pose has been estimated along a given trajectory in the 
environment, shown in Fig. 4(a), where the same reference 
map has been used both for generating 361 sensor readings 
within the 360º field-of-view and for computing the 
likelihood values. By doing so, we are reproducing the 
situation of a perfectly known static map. Under these 
conditions, we contrast the performance of particle filter-
based localization for three likelihood methods: BM, LF, 
and our RSLC. The accuracy of the estimated pose is 
evaluated in two different ways: (i) by computing the mean 
error between the ground truth and the mean robot pose 
according to the particles, and (ii) by evaluating the robot 
pose distribution at the ground truth (since the pose 

distribution is given by a set of particles, a continuous 
version is reconstructed by a Parzen window with a 
Gaussian kernel [19]). The results are shown in Fig. 4(b)-
(c), respectively. Due to the stochastic nature of the 
experiments we represent the mean values and 1σ 
confidence intervals for each chart after executing each 
experiment 10 times. The ordinates of the graphs stand for 
the ratio of range values employed from the whole scan: the 
experiments have been repeated for ratios starting at 2% (7 
ranges) and up to the whole scan (361 ranges). These results 
reveal that RSLC provides the most accurate pose estimation 
(1cm mean error, approximately), even using only 2% of the 
ranges in the scan, while the LF method requires almost 
100% of them to achieve the same accuracy. Regarding the 
probability assigned to the ground truth (see Fig. 4(c)), the 
RSLC method is surpassed by the LF and BM: RSLC is too 
pessimistic in assigning likelihood values. Thus, for 
perfectly known environments, the estimations from BM 
and LF are less uncertain than the one from RSLC (i.e. 
RSLC is excessively pessimistic for this ideal situation). 
 To emulate a dynamic scenario, sensor readings are 
simulated through the modified map shown in Fig. 4(d), 
whereas the robot uses the “reference” map in Fig. 4(a) to 
compute likelihood values. In the “dynamic” map some 
obstacles have been moved, removed or added to simulate 
typical problems. These experiments reveal a superior 
performance of RSLC: the mean error for our method, in 
Fig. 4(e), is the lowest from the three methods over the 
whole range of ratio values. Even more significant are the 
results for the probability assigned to the ground truth: by 
comparing Fig. 4(c) and Fig. 4(f) it can be seen how this 
indicator decreases slightly for the RSLC, whereas it 
abruptly falls for the other methods. Please, notice that 
particle filters perform a resampling process that discard 
particles at poses with a low likelihood value, thus RSLC is 
the most robust method in the sense that it minimizes the 
probability of a correct particle to be removed. The 
robustness of RSLC can be better visualized in Fig. 4(g), 
where the estimated path is shown according to each 
method. For ease of representation, the 99.7% confidence 
intervals are used instead of the original particles. It is clear 
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0.1

0.2

0.3
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Fig. 3 An example of how our method computes the probability of the 
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point and four map points are represented in (a) among with the 

corresponding probability values, which are graphically represented in (b), 
along with the probability of the point not corresponding to any map point 
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that the estimation from RSLC is closer to the ground truth 
and less biased than the others. 

B. Real Robot Experiment 
 To test the robustness of the different likelihood 
estimation methods against dynamic objects and 
discrepancies between the map and the real environment we 
have carried out an experiment where the robot moves 
throughout a dynamic cluttered room populated with people. 
A map of the environment was built, and then it was 
modified by moving furniture, removing objects, etc. The 
results are summarized in Fig. 5, where the particles are 
plotted for some instants of time together with the scanner 
readings projected from the weighted mean given by the 
particles (please, refer to the online videos for a better grasp 
of the experiment [18]). It can be visually verified that the 
estimation using RSLC provides a better alignment of the 
readings with the map, even in situations where most ranges 
do not have correspondences into the map. It is remarkable 
the poor performance of the BM, whose estimation is 
absolutely wrong from time step t=20sec on, approximately 
(please, observe that the sensed scans do not match the map 
at all). This is due to the inability of this model to cope with 
objects that appeared in the map but were removed 
afterwards. The opposite case (sensing new objects not 
present in the map) is typically solved by pre-processing the 
range scan [6]. By contrast, the RSLC does not require 

additional artifacts to deal with the problems derived from 
dynamic environments. 

VI. CONCLUSIONS 

 In this paper we have addressed the problem of deriving 
a likelihood function for highly accurate range scanners. 
Instead of assuming an unrealistic measurement uncertainty 
for each range as previous works do, we have presented an 
accurate likelihood model for individual ranges, which are 
fused by means of a Consensus Theoretic method. Our main 
contributions are: the employment of the actual uncertainty 
in sensed points (according to the sensor precision), the 
consideration of uncertain in the correspondences with the 
map, and a sensor fusion method that confers RSLC an 
unprecedented degree of robustness for applications in 
dynamic scenarios.  
 Exhaustive simulations in static, synthetic environments 
reveal an excellent performance of the RSLC method even 
when considering only a small fraction of the whole range 
scan (e.g. 7 range values), while other methods require 
significantly more measurements to achieve similar results. 
Furthermore, results for dynamic environments demonstrate 
a qualitative improvement in the robustness of the robot 
pose estimation. 
 These promising results suggest that integrating our 
approach into probabilistic SLAM methods would improve 
the building of maps for dynamic, cluttered environments, a 
challenging issue that requires further research. 
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Fig. 4 Results for experiments in a synthetic environment. In a first set of simulations, the actual map (a) is available to the likelihood methods (a perfectly 

modelled environment). The resulting mean error from the ground truth and the likelihood assigned to the actual robot pose are shown in (b)-(c) 
respectively for the three methods (BM, LF, and RSLC). The graphs show the evolution of the results with the percentage of employed ranges from the 

scan. Confidence intervals of 68% are marked in all the graphs. The second set of experiments simulates a dynamic environment by using a slightly 
different map (d), whose results are plotted in (e)-(f), which reveal that RSLC outperforms the other methods. (g) A close look at part of the estimated 

trajectory in this case, according to each method. 
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Fig. 5 Results for localization in a real dynamic scenario. Snapshots on the upper row show some instants of time along the robot navigation, while the rest 
illustrate the evolution of the particle filter for each likelihood computation method. See the text for further discussion. 
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