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 Abstract – In Bayesian based approaches to mobile robot 
simultaneous localization and mapping, Rao-Blackwellized 
particle filters (RBPF) enable the efficient estimation of the 
posterior belief over robot poses and the map. These particle 
filters have been recently adopted by many exploration 
approaches, to whom a central issue is measuring the certainty 
inherent to a given estimation in order to be able to select robot 
actions that increase it. In this paper we propose a new certainty 
measurement grounded in Information Theory that unifies the 
two kinds of uncertainty which are intrinsic to SLAM: in the 
robot pose and in the map content. Most previous works have 
considered only one of them or a weighted average. Our method 
combines them more appropriately by first building an expected 
map (EM) which condenses all the current map hypotheses and 
then computing its mean information (MI) – an entropy derived 
measurement that quantifies the inconsistencies in the EM. 
Experimental results comparing our method (EMMI) with others 
verify its correctness and its better behavior for detecting the 
decrease in certainty when the robot enters unexplored areas and 
its increase after closing a loop.  
 
 Index terms – Mobile robots, SLAM, particle filters, 
information theory, probabilistic mapping. 
 

I.  INTRODUCTION 

 Automatic acquisition of environment models while 
simultaneously performing self localization (SLAM) is one of 
the major challenges for autonomous mobile robots. 
Probabilistic approaches based on Estimation Theory have 
received a great attention in the last years for addressing this 
problem. In particular, sequential Monte Carlo sampling 
methods (particle filters) are powerful enough to cope with 
any shape in the probability distributions, non-linear models, 
and a diversity of hypotheses in localization-only applications 
([5],[7]). Estimating both the robot position and the map can 
be addressed through Rao-Blackwellized Particle Filters 
(RBPF), which reduces the dimensionality of the estimation 
problem by marginalizing out some variables, in particular, 
the map ([1],[6]). RBPF-based approaches maintain a 
posterior belief over the robot path consisting of a set of 
particles, i.e. each particle is a path hypothesis, as those ones 
plotted in Fig. 1(b). Attached to each particle it is also 
maintained an estimation of the map, which can be 
analytically determined from the associated path 
([6],[9],[10],[14]).  
 This probabilistic framework underlies many recent works 
in automatic robot exploration, where the robot usually takes 
actions with a high expected information gain and a low cost 

([3],[4],[14]). Making the robot to actively interact with its 
environment is of the greatest interest since the complexity of 
the mapping problem can be drastically reduced [4]. For 
example, think of a robot just before closing a large loop and 
having two possible paths: one of them which definitively 
closes the loop and the other entering a new unexplored area, 
as represented in Fig. 6(c). If the first option is taken before 
the second one, the map of the new area to be obtained later 
will posses a much higher certainty than if the loop is not 
closed first.  
 Therefore, a crucial point in the fields of exploration and 
in active localization is that of measuring the certainty in the 
mapping process. This can be performed by different means:  
• The uncertainty in the robot pose can be estimated 

through its entropy. This method has been utilized in the 
contexts of localization and map building [12], 
localization only [18], and exploration [4]. Since the map 
is not taken into account this measurement reflects only 
part of the certainty present in RBPF mapping. 

• The volume covered by the particles is used in [15] 
instead of the entropy. However it also directly reflects 
only the certainty in the pose, ignoring the map contents. 
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Fig. 1 (a) In RBPF mapping  the map associated to the particle with a higher 
probability is considered the most likely map. (b) The expected map (EM), 
introduced in this paper, is a weighted map where all particles contribute to. 

The uncertainty in the mapping process can be accurately determined by 
means of this map. 
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• The entropy values of both, paths and the map, are 
considered in [3] individually and then weighted together. 
A more elegant method is introduced in [14] by 
computing the joint entropy of both variables. However, 
they consider the individual maps separately without 
taking into account the relative consistency between them, 
as our method does. 

 
 In this paper we propose a new entropy-based approach to 
measure the certainty in the information of a RBPF-based 
map. The underlying intuition in our work is that contradicting 
hypotheses result in vague map estimations, whereas 
consistent ones lead to more certain (coherent) information. In 
this work we define the expected map (EM) as the weighted 
map which arises from taking into account all the particles 
(see Fig. 1(b)). We claim that this new map not only allows us 
to estimate the certainty of each original hypothesis but also 
reflects their relative consistency, therefore integrating better 
than other approaches both certainty sources: robot paths and 
contents of each proposed map. We compute the certainty in 
the resulting map with a novel entropy-based information 
measurement, namely the mean information (MI): our process 
takes all particles in a RBPF and computes their expected map 
mean information (EMMI) value, which provides a valuable 
estimation of the certainty that can be used, for example, in 
exploration or active localization methods. 
 It must be highlighted that this paper addresses maps 
based solely on occupancy grids, although the presented 
method can be extended to other map types provided that 
probabilistic representations are available for them. An 
interesting contribution of our certainty metric in the context 
of occupancy grids is its independence on the grid resolution 
and on its size, i.e. its rectangular limits. Thus the resulting 
EMMI values are contrastable across different experiments 
and configurations. This is not the case of previous approaches 
where entropy is applied directly. 

 In the next section we define the EM in the general 
framework of Bayesian paths and map tracking, and we also 
describe its practical implementation with particle filters. In 
section III we review the concept of the entropy of a map and 
introduce our certainty metric. Finally, section IV provides 
experimental results where our method is compared with 
other, including then some conclusions. 

II.  THE EXPECTED MAP (EM) 

A. Problem formulation 
 Assume a robot moving in a planar scenario whose pose 
can therefore be described by x=[x y φ]T, where (x,y) are 2D 
coordinates and φ  is the robot heading. The actual pose is not 
accessible to us and at any given instant of time we are only 
provided with an estimation in the form of the probability 
distribution p(x). Bayesian estimation has proved to be a 
powerful tool in recursively computing that distribution, 
assuring the convergence of that posterior belief towards the 
actual robot location, i.e. the peak in the distribution will 
ultimately coincide with the actual robot pose, even for the 
difficult case of the “robot awake” problem [17]. The 
Bayesian update rule for the robot pose can be written down in 
its iterative form as follows: 

        ( ) ( ) ( ) ( )∫ −−−−∝ 1111  , nnnnnnnn dpapzpp xxxxxx  (1) 
where an and zn represent the actions of the robot (usually 
through odometry readings [17] or range scan matching [15]) 
and its observations at step n respectively. The density p(xn) is 
estimated up to a proportionality constant, thus must be 
normalized at each iteration. 
 Apart from the robot pose, the environment must also be 
represented in some way if we are carrying out SLAM. In this 
work we consider occupancy grids as the world model (map). 
This representation of space is very popular in the robotics 
community, having been widely employed during the last 
twenty years ([8],[9],[11],[16]). An occupancy grid is a 
random field where we store the occupancy likelihood for 
each cell, which we will denote as: 

                                      ( )yxmp ,  (2) 
for any cell with indexes 〈x,y〉 in the map m. If no prior 
information is available about the obstacles present in a given 
environment, all cell occupancies can be set to 0.5: there is the 
same likelihood of any cell to be occupied or free. 
Subsequently sensors measurements update the map, and 
therefore that initial value. For that update, our method 
considers the inverse sensor model, 

                                     ( )kyx zmp ,  (3) 
 that is, the cells occupancy likelihood conditioned to a given 
observation zk. Fusing the current observation with the 
previous contents of the map is done on a Bayesian basis by 
using the following iterative expression: 
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which can be easily derived from the log-odds representation 
of the update process [15] if we assume an initial occupancy 
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Fig. 2 The probabilistic inverse model of a sensor estimates the occupancy of 
a given cell, given that some reading zk has been obtained. In the figure this 

density is plotted for a laser range finder (and for a measurement of zk=0.5m) 
as a function of the distance from sensor to cells. The distribution is highly 

peaked due to the sensor high accuracy. 



 

likelihood of 0.5 for all cells1. Essentially, (4) increases the 
certainty in the occupancy/freeness of a given cell if 
subsequent observations confirms the earlier belief. The only 
density required to iterate (4) is the inverse sensor model of 
(3). For the case of a laser range scanner we consider the 
function depicted in Fig. 2. 
 At this point we have defined stochastic representations 
for both the robot pose and the map (in (1) and (4), 
respectively), thus we could compute their entropy values 
separately to measure the uncertainty in both estimations. 
However, we propose to first build a new map, the EM, with 
the intention of revealing the inconsistencies between maps 
associated to different particles in the RBPF. 

B. Definition of the Expected Map 
 The expected map (EM) is the map expectation over all 
paths possibilities, given by the density p(x1:n), and for a set of 
associated observations z1:n. In the case of occupancy grids, 
the EM is another grid defined as: 
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 for all cell indexes 〈x,y〉. Here the density p(x1:n) is supposed 
to be available in a continuous form, an impractical 
assumption. If this density is rather represented as a set of M 
particles the EM can be approximated with: 
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 The intuition behind (5)-(6) is that, by contrasting the 
occupancy values p(mxy) of cells at the same location (the 
same 〈x,y〉 indexes) but from the different maps associated to 
each particle, we can prove the relative coherence between all 
the hypotheses. The result can be visualized as a “fuzzy” map, 
as in Fig. 1(b), where the sharper the image, the more certain 
is the map information for the associated area.  
 

                                                           
1 Here the Markov assumption is not considered since all the past states are 
involved in the derivation of the current map. 

III. A CERTAINTY METRIC FOR THE EM 

A. Definition of the Mean Information 
 In the following we derive an information measurement 
which stresses the certainty in the occupancy likelihood of 
cells in the grid in opposition to measuring the total amount of 
information in the map (which is related to the number of 
observed cells). 
 Information theory establishes that the amount of 
information associated with a random variable is related to its 
entropy [13]. Consider the entropy of a single cell in the grid, 
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which is the entropy of a discrete random variable with two 
possible outcomes, i.e. a Bernoulli distribution. Notice that the 
maximum entropy is obtained for p(mxy)=0.5, that is, for 
unobserved cells. Recalling the independency assumption 
between cells, the entropy for the whole map turns into: 

( )( ) ( )( )∑=
yx

xympHmpH
,

 (8) 

 This estimation of the entropy is widely used as a 
measurement of the information in the map ([3],[14]). 
However, it exhibits the following limitations: 
1. Its absolute value depends on the grid size (the 

rectangular limits of the map) instead of the actually 
observed area. Note that from (7) it follows that 
unobserved cells will contribute to the global entropy with 
a maximum entropy value. 

2. It depends also on the grid resolution, since it settles 
(together with the map limits) the total number of cells in 
the map. This means that the entropy of any map with 
unobserved areas (all maps in practice) increases without 
bound when resolution increases. 

 
 To overcome these drawbacks we employ the information 
(I) of a map instead of its entropy: 
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 where the entropy H(·) is computed by substituting the natural 
logarithms in (7) by base-2 ones. As a result we obtain a 
natural unit for information: bits. Noticeably the maximum 
information value (1 bit) is given to a certainly occupied/free 
cell while the minimum value (0 bits) is associated to any 
unobserved cell. The entropy dependency on the grid size is 
therefore avoided: the limits of the map become irrelevant 
since all unobserved cells now contribute with null 
information. Thus, the resulting measurement is a more 
practical quantifier of the amount of information carried by the 
map than the direct application of the entropy. 
 However, in this work we are not interested in the 
absolute amount of information in the map but in its certainty. 
To effectively reflect the certainty in a map m we introduce its 
mean information (MI), defined as 

(a) (b)

(c) (d)

I(m)=0.1064 bits/cellI(m)=0.1064 bits/cell I(m)=0.1062 bits/cellI(m)=0.1062 bits/cell

I(m)=0.2710 bits/cellI(m)=0.2710 bits/cell I(m)=0.2583 bits/cellI(m)=0.2583 bits/cell

Fig. 3 (a)-(b) Scans and MI values for their associated maps. (c) When both 
scans are consistently fused in the same grid, the information value increases. 
(d) Inconsistencies due to poor robot localization decrease the quality of the 

fused map, which is confirmed by a lower MI value. 
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 where Nobs represents the number of observed cells in the 
map, i.e. cells with an occupancy likelihood different from 
0.5. Notice that MI delivers bounded values in the range [0,1]. 
As an illustrative example of how the MI fits our purposes 
please consider the occupancy grids in Fig. 3. The first pair of 
maps represents two observations of the same environment 
from slightly different poses. In Fig. 3(c) both are merged into 
the same map (by means of (4)) with the correct alignment: 
each observation confirms the occupancy values of the 
overlapped cells (resultant occupancy values are closer to 0 
and 1) and, as desired, the resultant MI value is greater than in 
maps where only one observation is inserted. This behavior 
follows from the properties of the information as defined in 
(9), whose maximum values are obtained for occupancy 
values of 0 and 1. When both observations are misaligned the 
consequent inconsistencies reduce the MI value, as shown in 
Fig. 3(d). Notice that in fact, the misaligned map contains 
more observed cells than the previous case (the total area of 
the misaligned mixture is bigger than that of the perfectly 
aligned maps), but the certainty of those cells is lower, in 
terms of the mean information.  
 We can highlight the following properties of the MI which 
set it apart from classical entropy-based measurements: 
1. An empty map (containing only unobserved cells) has a 

null mean information value. 
2. It is mostly independent on the grid resolution for 

practical cell sizes. This is shown in the maps of Fig. 4(a)-
(c), whose MI increase as we consider higher resolutions. 
As the resolution increases, the MI asymptotically tends 
towards a maximum value, as appreciated in Fig. 4(d). 
This presents a great difference with the direct entropy 
behavior, which in that case tends to infinite. The 
asymptotical behavior of MI depends on the inverse 
sensor model, the specific environment being mapped, 
and other factors. In [2] we have derived a theoretical 
expression for this bound for the particular case of a 
circular synthetic environment. 

3. The better the alignment between observations into the 
map, the higher the obtained MI values, as Fig. 3(c)-(d) 
illustrate. The intuitive idea behind this property is that 
well-aligned observations make the occupancy likelihood 
of cells to become almost 0 or 1, which correspond to 
maximum MI values. This property is crucial in 
understanding the highly distinctive behavior of MI after 
a loop closure, as shown later.  

 At this point we can now recover the problem of 
measuring the certainty in RBPF mapping since we have 
already defined new tools, namely the EM of a RBPF and the 
MI of a map. We denote the proposed certainty metric as the 
EMMI (expected map mean information). Formally, 

                 ( )( ) ( )( )( )nnnn zpEMIzpEMMI :1:1:1:1 ,, xx =  (11) 

that is, the value resulting of computing the MI of the EM for 
a given RBPF at a given instant of time n.  

B. Comparison with other approaches 
 Our proposed method can be compared to the entropy of 
the poses ([4],[12],[18]) and to the joint entropy [14]. Next we 
provide a theoretical discussion about the differences between 
those methods while in the next section experimental values 
are obtained for each of them. 
 Regarding their computational time complexities the most 
simple method is the entropy of poses since it implies O(M) 
operations only, where M is the size of the particle population. 
On the other hand, the joint entropy has a complexity of 
O(M(N+T)), where T is the length of the paths and N the cells 
count in the grid. Clearly the cell count will be the dominant 
quantity in most situations, therefore the complexity tends 
toward O(MN) which coincides with that of our method. 
Therefore, the entropy of poses is many orders of magnitude 
less complex than the others, at the cost of not considering the 
map content. It remains being a useful indicator of the quality 
of the pose estimation, anyway. 
 Concerning the space complexities, our method requires 
an additional map (the EM) to be maintained apart of the M 
maps attached to each particle in the RBPF, whereas the joint 
entropy does not require this supplementary storage.  
 The results of the joint entropy and the EMMI have quite 
different interpretations. We can realize of that by expanding 
the expression for the first estimator [14]: 
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Fig. 4 (a)-(c) The occupancy grids obtained from mapping the same 
environment with different resolutions. (d) The mean information (MI) is 

plotted for different grid resolutions, from 1m to 2.5mm. It is remarkable the 
small increase in information produced by increasing the resolution of a map 
in the highlighted range, which coincides with commonly used resolutions. 
Therefore,  in practice the MI can be regarded as resolution independent. 



 

where it can be seen how the entropy of the map contents (mxy) 
contributes to the total value weighted by the paths  likelihood 
p(x1:n|z1:n). On the other hand, the EMMI considers the entropy 
of cells in the EM (by means of the MI as defined in (10)) 
which, for its part, is a weighted average of maps from each 
particle. Consequently, EMMI computes the entropy of the 
average of maps, whereas the joint entropy performs these 
operations in the opposite order. To graphically see the 
important implications of this difference, Fig. 5 shows the 
entropy factors regarding the map contents in each of these 
methods for the case of only two equally probable particles 
(this simplification is to allow values to be represented in 3D). 
The key distinctive point of EMMI is that inconsistencies like 
one hypothesis stating a cell is free (a value near 0) and the 
other stating it is occupied (a value near 1) are detected by 
EMMI as uncertainty, i.e. higher entropy values, see Fig. 5(b). 
On the other hand, the joint entropy, in Fig. 5(a), considers 
these cases instead as certainty (low entropy values). 
Obviously the EMMI is, by design, better suited to detect the 
relative consistency between several proposed maps. 
 

IV. RESULTS AND CONCLUSIONS 

 To experimentally compare our method to previous ones 
we have considered the mapping of part of our building by 
means of a RBPF. Our algorithm is based on ideas from [9] to 
allow the mapping of large areas through a small number of 
particles. We use only 15 in this experiment. A video file of 
this experiment is available in 
http://www.isa.uma.es/C16/research/. 
 Fig. 6(a)-(c) show the EMs until the robot has almost 
completed a loop. At that point we consider two possible 
actions: to definitively complete the loop or to enter an 
unexplored area, marked as A and B, respectively. If action A 
is performed as in Fig. 6(d), the return to the start location 
makes the likelihood of some particles to become much higher 
than others, resulting in a resampling where incorrect 
hypotheses vanish: the estimations of robot path and map 
become much better than before. To measure this change in 

the certainty we use the EMMI, plotted in Fig. 6(f). The most 
remarkable feature is the gradual degradation of the certainty 
(low EMMI values) until step 85 approximately, where the 
loop is completely closed and both the robot pose and the map 
estimations become closer to the truth (compare Fig. 6(c)-(d)). 
The abrupt falls in the EMMI at steps 12 and 27 correspond to 
increases in the uncertainty of the map while the robot turns 
corners to enter new corridors.  
 On the other hand, if the robot takes the other option 
(action B), a new area will be mapped but with a high degree 
of uncertainty. This is clear from the “fuzzy” appearance of 
the EM in Fig. 6(e). The EMMI for this case is the dashed plot 
in Fig. 6(f), where the difference with the other choice is 
patent: the certainty keeps decreasing whereas in the loop 
closure it raises.  
 This experiment shows how EMMI is well-suited to 
measure the overall certainty in a RBPF, but it must be 
contrasted with other estimators. The entropy of the poses, as 
defined in [4], is plotted for both discussed situations in Fig. 
6(g). This measurement correctly captures the increase in 
uncertainty, but in the case of particles being resampled (as 
occurs in both situations) it restores its maximum value. 
Notice that this entropy only does not suffice to determine if 
the particles resampling is due to a loop closure or to their 
degeneration. The other uncertainty estimator to be compared 
with our method is the joint entropy [14], which evolves as 
shown in Fig. 6(h). As discussed in this work, the factors 
involved in this estimator do not consider the consistency 
between different hypotheses, but only the individual map 
contents. A particular effect of considering separately the 
entropy of each map is that the joint entropy decreases when 
exploring new areas (there are less unobserved cells in the 
individual maps) independently of the certainty in the robot 
pose estimation. Thus, no relevant information can be 
extracted from Fig. 6(h) indicating the drastic difference in the 
certainty of the RBPF after taken actions A and B. We can 
therefore conclude that EMMI stands out as a better certainty 
estimator than others. In addition, it exhibits other interesting 
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Fig. 5 Factors involved in the joint entropy (a) and in the EMMI (b) are plotted for the case of only two particles as an example of how both approaches deal with 
different occupancy values for the same cell in maps from different hypotheses. It is clear that the first one considers as certain (low entropy) contradictory values, 

like p1=0 (the cell is free) and p2=1 (the cell is occupied), whereas EMMI only gives low entropy values when both likelihoods are alike (consistent). 



 

distinctive features, as being almost insensitive to map size 
and resolution and providing values in a bounded range.  
 To summarize, in this paper we have reviewed how RBPF 
can efficiently solve the SLAM problem and why measuring 
the certainty is an important issue in active localization and 
exploration methods. A novel measurement has been 
introduced, the EMMI, which reveals valuable information 
about the certainty in a RBPF mapping system at a given 
instant of time. This method represents a computational 
complexity similar to others but with a highly distinctive 
behavior derived from its novel consideration of the relative 
consistency between all the hypotheses. Future research is 
aimed to integrate our certainty estimator with existing active 
exploration approaches. 
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Fig. 6 The EM for a RBPF based mapping are shown in (a)-(c) for three instants of time. We consider two possible paths for the robot at step 65. One of them (d) 
definitively closes the loop and reduces the uncertainty, as clearly detected by the EMMI (f). The other path (e) makes the robot to enter an unexplored area, 

increasing the uncertainty as the EMMI also reflects. Other indicators are also plotted in (g)-(h): the poses entropy and the joint paths-map entropy, respectively. 
We claim that EMMI reflects more effectively the real uncertainty in the mapping process than the other measurements. 
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