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Abstract – Recently, hybrid maps that combine metric and 
topological world information have been proposed as a 
powerful representation of mobile robot environments. Among 
others, these maps are of special interest for efficiently 
managing large-scale environments, and for accurate 
localization. For achieving that, local geometric maps are 
stored in the nodes of a graph-based global map. In this paper 
we present a novel approach for automatically obtaining those 
local maps from observations. The method considers the space 
sensed in each observation as a node of a graph with arcs 
representing the space overlap between observations. The 
recursive partition (cut) of this graph produces groups of 
strongly connected nodes from which consistent local maps for 
accurate localization are derived. The proposed partition 
technique is well-grounded in the spectral graph theory of, and 
it is formulated for any type of sensor observation. We depict 
an implementation for grouping 2D laser scans, and show 
experimental results with real data that demonstrate the 
performance of the method. 

Index Terms – Graph partitioning, map building, mobile 
robots, topological maps.  

I. INTRODUCTION

 When a mobile robot moves in an unknown 
environment it must deal simultaneously with both 
localization and mapping, namely the SLAM problem. This 
topic has received a great attention by the robotics 
community in last years, being proposed a variety of 
methods to approach the problem. According to the kind of 
world model they use, these methods can be classified into 
metric ones, which use geometrical information ([6],[7],[9]), 
or topological ones, which represent the world with a graph 
whose nodes usually represent distinctive places ([1],[12]). 
Recently, hybrid models that combine both information 
types have being proposed as a promising solution to deal 
with larger and more complex real robot environments. 
Typically, these approaches attach a local geometrical map 
(suitable for robot localization) to the nodes of a graph-
based world representation ([2],[3],[13]). A crucial point 
then is to decide how to distribute the mapped environment 
between those local maps. From the different propositions 

reported in the literature, the following ones are of special 
significance: the Atlas framework [2], where a new local 
map is built and updated from observations until 
localization performs poorly; and, more recently, the 
hierarchical SLAM presented in [3], where new sensed 
features are integrated into local maps until a given number 
is reached. However, none of these works provide a 
mathematically grounded solution for this problem. There 
are some interesting works aimed to achieve efficiency in 
SLAM by hierarchically dividing the map into local regions 
and subregions ([5], [10]). These works are based on the 
statistical dependency of landmark observations while ours 
is general enough to cope with any type of sensed data. In 
particular, in this paper we propose an implementation for 
dense range scans. 
 The method proposed here is based on the spectral 
graph theory for grouping together robot observations that 
give rise to consistent local maps for efficient and accurate 
pose estimation. The method considers the space sensed in 
each observation as a node of a graph whose arcs (edges) 
represent the sensed-space overlap (SSO) between two 
observations (see Fig. 1). The partition of this observation 
graph through a recursive minimum normalized cut 
produces groups of strongly connected nodes from which 
the local maps are obtained. This procedure yields near-
optimal graph with respect to some goodness measure.  
 The observations we are referring to may come from 
any sensor, but they must consist of a homogeneous 
distribution of physical features: for example, the set of 2D 
points from a laser range scan (which is the particular case 
implemented in this work), or 3D points extracted from 
intensity images in some way, i.e. stereo, structure from 

Fig.1 The sensed-space overlap (SSO) is a measurement of the common 
part of the environment captured by two observations. 
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motion, etc. The SSO of two observations is calculated 
through a registration process that takes into account these 
environmental features as well as the corresponding robot 
poses, as provided by a localization module (not addressed 
here).    
 The remainder of this paper is organized as follows. In 
section II we present the general partition problem for 
generic graphs. Section III describes how a set of robot 
observations is translated into a graph. Some 
implementation issues when using laser scans and 
experimental results are discussed in section IV. Finally, 
some conclusions and future work are outlined. 

II. SPECTRAL PARTITION OF A GRAPH

 In this section we first present the basis for the 
bisection of a graph using the spectral approach. Then its 
generalization for producing any number of subgraphs is 
described. 

A. Spectral Bisection of a Graph  
 Let G = ( V, E ) be an undirected, weighted graph, 
where V is the set of vertices or nodes and E the set of 
weighted edges or arcs, using non-negative weight values. 
Let W be a symmetric square matrix of dimension |V|, 
where each of its elements Wij is the weight of the arc 
between nodes i and j. According to the definition 
introduced by Shi and Malik in [11], the normalized cut of a 
graph V into two subgraphs A V and B V, with A B=V
and A B= , is defined as: 

                
assoc(B,V)
cut(A,B)

assoc(A,V)
cut(A,B)Ncut(A,B)  (1) 

where  
                              

BA,vu
uvWcut(A,B)  (2) 

is the cut of the graph into the subgraphs A and B, which 
measures their inter-group cohesion and 
                           

VA,vu
uvWassoc(A,V)   (3) 

is the association of the group A (similarly for B), which 
estimates the intra-group cohesion, that is, the connection 
“strength” of all nodes within A with the whole graph 
(including A).
 Minimizing (2) in a graph partition (thus, denominated 
“min-cut partition”) tends to generate groups of no practical 
usefulness for some applications, since usual resulting 
groups includes the least connected nodes of the graph. It is 
of much more interest to get subgraphs with a balance 
between both, the inter-group and the intra-group cohesion, 
which is achieved by minimizing the Ncut, defined in (1). 
Thus, the minimum normalized cut of a graph V (min-Ncut)
is given by: 
                                   )(minarg BA,Ncut

BA,
 (4) 

 The range of values of an Ncut can be derived from the 
fact that: 

                 A)(A,B)(A,V)(A, assoccutassoc  (5)  
which implies that for the worst possible cut (the one in 
which nodes in a group are connected only to the other 
group), the values of assoc(A,A) and assoc(B,B) are zero, 
therefore: 
                 B)(A,V)(B,V)(A, minmin cutassocassoc  (6) 
and the maximum Ncut value becomes: 

                2
B)(A,
B)(A,

B)(A,
B)(A,B)(A, max cut

cut
cut
cut

Ncut  (7) 

 On the other hand, the minimum possible value of a cut 
is zero when there are no connections between the two 
groups. Thus, the Ncut provides a numerically well defined 
measure of the goodness of a partition. 
 Finding the exact min-Ncut bisection is a 
computationally intractable problem, in fact a NP-complete 
one. Following the proposition by Shi and Malik for image 
segmentation [15], we will use an approximate approach 
based on spectral bisection of graphs, which produces near-
optimal cuts. This method relies on solving a generalized 
eigenvalue system, as it is summarized next.  
 Let x be the bisection indicator vector with dimension 
N=|V|, where xi = –1 if node i falls into group B, or 1 if it 
falls into A. Let d be the vector with the sum of adjacent 
arcs weights for each node, that is,

j iji Wd . We build a 

diagonal matrix D with d as its diagonal. It can be shown 
that the min-Ncut problem can be rewritten as: 

                
yDy

yWDyx
yx

T

T

)( minargNcutminarg (8) 

where y = (1+x) – b (1–x), with 1 a N  1 unity vector, and 

                                    
0ix i

0ix i

d

d
b  (9) 

 Ideally, the elements of vector y should take just two 
discrete values, since xi takes the values {–1,1}. However, if 
this condition is relaxed and y is allowed to be real valued, 
then (6) is no longer discrete and can be minimized by 
solving the generalized eigensystem: 
                                DyyWD                             (10) 
where D–W is a well-known term, namely the Laplacian 
matrix of the graph ([4],[8]). The above equation can be 
rewritten as a standard eigensystem using z = D½ y:

                            zzDWDD 2
1

2
1

                   (11) 
 It can be shown that z0= D½1 is the eigenvector 
corresponding to the smallest eigenvalue of (11) (“the 
smallest eigenvector” from now on), which is zero. 
Translating back this result to the original system in (10), 
we have that y0=1 is the smallest eigenvector of (11). Since 
the fraction in (8) is a Rayleigh quotient [8], and its 
eigenvectors are orthogonal2, then both (10) and (11) are 

                                                          
2 Since the Laplacian matrix D–W is positive semidefinite, D-½(D–W)D-½

is symmetric positive semidefinite, thus its eigenvectors are orthogonal. 
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minimized with the next smallest eigenvector. Thus, we 
have that solving the min-Ncut expressed in (8) is 
equivalent to finding the second smallest eigenvector, y1, of 
(10).   
 The only approximation made on the above result is 
that the components of the eigenvector y1, from which we 
have to decide the group, will not take just two values, but 
any real number. Obviously, this complicates the bisection 
criterion; however, there still exists a clear distinction 
between the two groups, as it can be observed from the real 
examples shown in Fig. 2. Two different criteria seem 
plausible for assigning each node to a group: (i) look at the 
sign of each component of the eigenvector; and (ii) take the 
mean value of eigenvector as a threshold for the partition. 
The latest is the criterion we have used in our 
implementation, since it has demonstrated to give more 
precise partitions that the other.  

B. Partitioning a graph in k-groups 
 The method presented above provides a solution to the 
graph bisection problem; however, for dividing a graph into 
a variable number of subgraphs, this method must be 
generalized somehow. An easy and effective way of 
achieving that is to recursively apply bisection to any 
subgraph as long as two clearly differentiated groups are 
obtained (as it occurred in the examples of Fig. 2). The min-
Ncut value for a given bisection is a well-grounded measure 
of the goodness of the cut. The Ncut of a graph measures 
the inter-group cohesion of the resulting subgraphs, 
inversely scaled by the intra-group cohesions with values in 
the range [0,2]. Values close to zero indicate almost no 
connection between groups (a good partition), while values 
near 2 indicate that the groups are more strongly connected 
to each other than with themselves (not to be partitioned). 
Therefore, an intermediate value must be established as a 
threshold to decide accepting the bisection or not. 
 Typically, this value has been set heuristically for each 
application (as in [11],[14]), however, to keep the method 
free of any subjective ad-hoc parameter, we propose to use 
a fixed threshold value of one (the center of the range 
interval), which is supported by the following. The intra-
group cohesion of a subgraph A is given by assoc(A,V) as 
defined in (3), while the inter-group cohesion of A with the 
rest of the graph, let say B, is given by cut(A,B) as defined 
in (2). When the inter-group cohesion, given by cut(A,B) is 
below certain averaged estimation of the two intra-group 
cohesions (assoc(A,V) and assoc(B,V)), the bisection should 
not be done. We propose here to use the geometric mean, 
which leads to a constant threshold value. Thus we set the 
threshold as the following value: 
              B)(B,A)(A,B)(A, T assocassoccut  (12) 
which can be combined with (1), giving: 

                
V)(B,

B)(A,
V)(A,

B)(A,B)(A,
TT

T

assoc
cut

assoc
cutNcut   (13) 

B)(B,B)(A,
B)(A,

A)(A,B)(A,
B)(A,

T

T

T

T

assoccut
cut

assoccut
cut

1
2

2

where for clarity we have used =assoc(A,A) and 
=assoc(B,B). Hence, we obtain a value of 1 to decide 

whether to apply the bisection or not. The whole procedure 
is summarized as follows: 

RecursivePart( G )  { P } 
begin
  SpectralBisection(G)  {A, B}, Ncut 

if  (N-cut<1) then
   P = { RecursivePart(A), RecursivePart(B) } 

else
   P = G 

end-if 
end 

 In the example of Fig. 3, this procedure is applied to the 
observations graph, which is divided into groups {G1} and 
{G2,G3}, in the first iteration. The latter is partitioned again 
because it has a minimum Ncut below one. The resulting 
groups G2 and G3 are no longer partitioned since a 
minimum Ncut over each of them gives values greater than 
one.  

III. THE OBSERVATION GRAPH PARTITIONING PROBLEM

 Let O={o1,…oN} be the set of observations taken by a 
robot during a navigation route. These observations consist 
of the location of environmental features, such as points, 
segments, patches, etc., from which a global geometric map 
has been derived. The construction of this map involves the 
registration of these set of features and from that, the 
estimation of the robot poses P={p1,… pN} in a common 
reference frame. When the map is very large two problems 
appear:  

1) Robot localization becomes quite inexact due to the 
accumulation of errors during the map building 
process, including noise in the observations, 
erroneous features correspondence, errors in the 
localization algorithm, etc.  

2) Dealing with an indivisible map is not efficient at all. 

Fig.2 Some real examples for graph spectral bisections. The plots show the 
components of the eigenvectors which are used to choose the bisection. 
The length of these vectors coincides with the number of nodes in the 

graph. Observe that the mean of eigenvectors is a well defined threshold 
value for the graph bisection.

820



 Provided that both, the observations O and poses P are 
known, our objective is to group those observations into 
local maps accurate for robot localization. Then, these 
metric local maps can be arranged as nodes of a graph-
based topological map, where the arcs represent the 
approximate relative transformation between the local maps. 
 We define the nodes ni of an Observation Graph as: 
                   N=  {n1,…nN} = {(o1, p1),…(oN, pN)}  (14)
 It is assumed that an arc exists between any pair of 
nodes, and its weight represents the sensed-space overlap
(SSO) of both observations calculated from their 
registration in space (using O and P), The SSO is evaluated 
through a normalized metric function: 
                                  : V  V  [0,1] (15) 
which must fulfill the following two conditions: 

Reflexivity: The SSO of any observation with itself 
must be maximum, (ni,ni) = 1. 
Symmetry: It must be commutative for nodes order, 

(ni,nj) = (nj,ni).
 Therefore, we can define the graph weight matrix W
simply as Wij = (ni,nj). Because of the two-above 
properties of , W becomes symmetric with a unity 
diagonal vector. Fig. 3 illustrates the graph partition method 
for a synthetic global map built from 14 2D laser scans as 
observations.   

IV. APPLICATION TO 2D LASER SCANS

 In this section we address the application of the 
proposed grouping observation method to laser range scans, 
dealing first with implementation details and then showing 
some experimental results.  
 We assume that the mobile robot has the capability to 
build a geometric map of the environment by applying a 
SLAM method, and consequently, the absolute robot poses 
from where the different scans were taken is available. 
Then, our approach consists of grouping these scans in a 
way that more consistent maps are obtained.  

A. Defining the SSO function  for laser scans 
 Let  

                  
q-p0

q-p1
,q,pC

ji

ji
ji  (16) 

be a Boolean function that, given a tolerance distance ,
indicates whether two scanned points pi and qj from 
different observations oi and oj, respectively, are matched. 
To apply this function, points from both scans must be 
referred to a common coordinate system through the poses 
P also stored in the nodes. Then, the ratio of matched points 
of oi  against oj  is expressed as a function of the nodes:  

                                                          
3 Please, observe that  is not a parameter of the grouping algorithm, but of 
the matching process.

Fig.3. An illustrative example of the graph partitioning method over a 2D laser map. (a) The global map obtained from 14 observations, where arrows indicate the 
poses where the observations were taken from. Notice that the map presents some orientation errors. (b) The observation graph. Each node contains the sensed 

space data (scan), and an estimate for its pose. The darker the arc, the higher the SSO between the observations. The observation graph is recursively partitioned 
into three groups: firstly, it is divided into two groups {G1} and {G2,G3}, then, the latter group is partitioned again because it has a minimum Ncut below one. 

The local maps obtained from these groups are shown in (d), (c) and (e), respectively. In (f) the weights matrix of the associated graph is shown as an image with 
dotted squares for the three partitions. 
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M

1

k
j

k
iji ,p,pC1,n,n

kM
 (17) 

where M is the number of points in the scan oi.
 This function  can not be directly used as a SSO 
function  since it is not symmetric: (ni,nj, ) (nj,ni, ).
This is caused by the variable scanning density which 
depends on distance: near objects are sampled denser than 
those distant apart. In Fig. 4 this effect is illustrated with 
two pairs of scans.  
 As a straightforward solution to this problem we have 
defined the SSO metric function as:

ijijjiji n,n,n,n,n,n21n,n   (18) 

which satisfies the two required conditions. 
 In summary, given the set of scans O and poses P, the 
subsequent steps are applied: 
1. By using (16), build the weight matrix W, with 

Wij= (ni,nj).
2. Build the diagonal matrix D, with elements 

j iji Wd

3. Apply recursive min-Ncut bisection to obtain 
“consistent” groups of nodes. For each group, run a 
map building algorithm to produce a more precise 
local map, taking into account the scans and poses 
stored in the nodes. 

4. Generate a metric-topological map where the above 
local maps are stored in the nodes of a graph and the 
arcs hold the relative transformation between them. 
This can be computed by averaging the differential 
poses between scans of different groups. 

 This process can be launched when the geometric map 
is considered to be not accurate enough. The most 
expensive stage is the map building process applied to those 
observations (nodes) resulting from the graph partition. This 
has been carried out by an external module (map builder)
based on the method proposed by Lu and Milios in [7]. On 

the other hand, the evaluation of the scan overlaps through 
(14) is quite cheap since the poses between scans are known 
(provided by the map builder).
 The hybrid map generated in this way allows the robot 
both to manage the space efficiently and to be localized 
locally more precisely. An important point that remains to 
be solved is how this hybrid map is updated when new 
observations (scans) of visited places are available. This is a 
tough, opened problem on which we (and many other 
researchers) are working currently. Nevertheless, this does 
not limit the applicability of the method presented in this 
paper, which fits well in a more comprehensive mapping-
and-localization framework.  

B. Experimental Results  
 The presented observation grouping approach has been 
extensively tested in a variety of real and simulated 
environments. For lack of space we show just one 
experiment in an office-like scenario, which is shown in 
Fig. 5. It comprises 77 laser scans taken through a route 
along a set of rooms and a corridor. From those 
observations our map builder produces the map plotted in 
Fig. 5(a), which presents some misaligned scans pairs: if a 
pair of scans has a low SSO, it is difficult to accurately align 
them. For example, a region in the corridor is zoomed in 
Fig. 5(b) from the map in Fig. 5(a), where inconsistencies 
can be found. The rest of maps in this figure are local maps 
generated by the presented approach, and its higher 
consistency can be seen, for example, with the zoom of Fig. 
5(h) into (e). That zoomed area is the same than before, but 
it can be seen how most inconsistencies have disappeared. 
This illustrates that local maps generated with this approach 
are consistent maps, in the sense of no internal 
contradictions. It is evident at this point that more consistent 
local maps lead to more accurate and efficient robot 
localization, since just the required, precisely aligned, scans 
will be available in each local map. 
 It should be pointed out that, although the resulting 
local maps may look like rooms and corridors, our purpose 
is not detecting such specific structures but getting good 
maps for robot localization in a grounded way. Notice that, 
though dividing the space into rooms or corridors are of 
quite interest for interfacing with humans, it may not always 
be the best choice for other robotic tasks, such as 
localization. Finally, and to give an idea of the 
computational burden of the method, it can be noted that the 
whole procedure to generate the local maps above takes 
0.24 sec. on a 2.8GHz Pentium IV processor. 

V. CONCLUSIONS AND FUTURE WORK

 In this paper we have introduced a novel approach to 
cluster robot observations into groups that give rise to 
precise local maps. These local maps can be arranged as 
nodes of a graph-based topological map, where the arcs 
represent the approximate transformation between them. 
This hybrid representation of the environment enables the 

Fig.4. In (a) and (b) two pairs of scans are plotted with their matching 
values. The highlighted areas are detailed in (c) and (d) respectively, where 

the effects of the non-evenly spaced sampling are clearly visible. This 
explains the lack of symmetry of the  function.
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robot to efficiently manage the space and to estimate its 
local pose more accurately. The grouping method used in 
this work is not new, since is a mathematical tool applied 
previously to other fields, but we believe that its 
successfully application to the problem addressed here is 
significant enough. This approach must be thought as part 
of a more comprehensive framework for localization and 
mapping that, among others, would manage the revisiting 
and updating problems, which are some of our current 
research goals. 

REFERENCES

[1] P. Beeson, N.K. Jong and B. Kuipers, “Towards Autonomous 
Topological Place Detection Using the Extended Voronoi Graph,” 
IEEE Conf. Robotics and Automation, 2005. 

[2] M. Bosse, P. Newman, J. Leonard, S. Teller, “An Atlas Framework for 
Scalable Mapping,” IEEE Conf. Robotics and Automation, 2003. 

[3] C. Estrada, J. Neira and J.D. Tardos, “Hierarchical SLAM: Real-Time 
Accurate Mapping of Large Environments,” in IEEE Transactions on 
Robotics, vol. 21, pp.588-596, 2005. 

[4] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovakian 
Mathematics Journal, vol.23, pp.298-305, 1973. 

[5] U. Frese, P. Larsson, T. Duckett, “A multilevel relaxation algorithm for 
simultaneous localization and mapping,” in IEEE Transactions on 
Robotics, v. 21, pp. 196-207, 2005. 

[6] J.S. Gutmann and K. Konolige, “Incremental Mapping of Large Cyclic 
Environments,” Conference on Intelligent Robots and Applications 
(CIRA), Monterey, CA, 1999. 

[7] F. Lu and E. Milios, “Globally consistent range scan alignment for 
environment mapping,” Autonomous Robots, vol.4, pp.333-349, 1997. 

[8] B. Mohan. “The Laplacian spectrum of graphs,” Graph Theory, 
Combinatorics, and Applications, pp. 871-898, 1991. 

[9] M. Montemerlo, S. Thrun, D. Koller and B. Wegbreit, “FastSLAM: A 
Factored Solution to the Simultaneous Localization and Mapping 
Problem,” Proc. Of the National Conf. on Art. Intell. (AAAI), 2002. 

[10]M. Paskin, “Thin Junction Tree Filters for Simultaneous Localization 
and Mapping,” Proc. 18th Int. Joint Conf. Artif. Intell., 2003. 

[11]J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,” IEEE 
Trans. Pattern Anal. Mach. Intell, v.22, no.8, pp. 888-905, 2000. 

[12]T. Soho, H. Ishiguro and T. Ishida, “Acquisition and propagation of 
spatial constraints based on qualitative information,” IEEE Trans. 
Pattern Anal. Mach. Intell, v.23, no.3, pp.268-278, 2001. 

[13]S. Thrun. “Learning Metric-Topological Maps for Indoor Mobile 
Robot Navigation,” Artificial Intelligence, v.99, no.1, pp. 21-71, 1998. 

[14]O. Veksler “Image Segmentation by Nested Cuts,” IEEE Conf. on 
Computer Vision and Pattern Recognition, 2000. 

[15]Y. Weiss, “Segmentation using eigenvectors: a unifying view,” Proc. 
of IEEE Int. Conf. on Computer Vision, pp. 975–982, 1999. 

Fig.5. (a) The observations that constitute the map, whose poses are represented as arrows. The presented approach takes these 77 observations and produces eight 
groups, where (c),(d),(f) and (g) match exactly with the four rooms visited by the robot, while the rest are sections of the corridor, as the one in (h). Zooms for the 

same area are shown in (b) and (e), corresponding to the original map (a) and the generated local map (h), respectively, where it is clear that the later is more 
consistent. The reason for this is that only close observations, with a high SSO (and therefore, well-aligned) are grouped together. 

823


	1160.pdf
	Main Menu
	Previous Menu
	---------------------------------
	Search DVD-ROM
	Search Results
	Print


