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Abstract, A recenl a¡rd promising area of research in robotics is a¡D1ed to develop
robots that share the same physical environnrent as hunrans. In tlris area, tlre most
relevant issue is not autonomy of the robot but the intell¡gent interaction or coop-
eration with humans. Some particular instances are seryice robots (ntuseLrm guides,
surveillance, etc.) and assistant robots (elderly cafe, telesurgery, etc.), where the
latter usually exhibit closer interaction with hur¡ans than the former. ln this paper
we identifo and use nrulti-agent technology as a suitable approach for developing
assista¡t robot architectures, since it enables a very close interaction -namely, ¡)l¿-
gralion- with humans (by considering the human as part of the fobot a¡chitectüe)
and it is also capable of learning the best way of cooldinating both robot and lru-
man skills (tlrrough reinforcement leam¡ng). We illustrate the approach with our
robotic wheelchair SENA, a mobile robot inteDded for assistance to handicapped
persons.

I Introduction

Robotic applications that interact with hur¡ans have rccently attracted great attention
f¡om the scientific commrurity. One of the reasons is that the presence of a human that
can interact wiü the robot may relax some of the requirements denanded fion corn-
plete autonomous robots.

Among rcbots that interact with humans, maybe the most studied ones are seryice ro-
óofs (that carly out liurited tasks in human populated scenarios such as museums, hospi-
tals, etc.) and ass¡stant robots (which can not work without humans at all, lbr example
surgery robots, assistant robots for elderly people, artifrcial limbs, etc). Human-robot
interaction becornes an important requirement in these applications. They also bear two
important characteristics that make them distinctive ftom othe$: on the one hand, they
impose some critical issues such as operating robustness, physical safety, and human-
friendly interaction (which have been coped recently by the Hunan Centered Robotics
(HCR) paradigm (tlll, t13l). On the other hand, the human becomes in fact so inte-
grated into the assistant rcbot that it is no more me¡ely a pan olthe envilonnent.

ln the literature, human participation in the ¡obotic operation is not a new idea. Some
tenns have been coined to reflect this, such as cooperatíon 1191, colluboration f5f, or
supet'visíon (t51, tl5l), but all of üem deal with the human as being extemal to the ro-
bot. We p¡opose here to take a step funher: to consider the hurnan as one ofthe compo-
nents of the robotic application. This is specially evident in applications where the hu-
man can be considered p/rysically as a paú of the robot, such as robotic wheelchairs or
artifrcial linrbs. In these situations we should talk of hunan-robot ¡ntesrqtíon tafher
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lhan httntcln-N¡bot interaction. We can obtain the following benefits flot¡ such integra-
tion:

-Augrrent the robot capabilities with new skills. Humans can perfom actions beyond
the robot capabilities, i.e. to open a door, to take an elevator.

-lrrlprove the robot skills. Humans rnay cari.y out actions initially assigned to the ro-
bot in different and sometinres more dependable ways! or.may complete robot actions
that have lailed.

Our apploach uses a multi-agent software robotic arcbjtecture, that we call
MA'CHRIN (the acronym for "Multi-Agent Architecture lbr Close Human-Robot Inte-
gration") for such integration. This fi'amewo¡k is rnore appropriate than a classical hy-
bdd layered (delibelative-reactive) architecture [16], since a software agent is the clos-
est we can be to lepresent the human within the architecture (as a pafi of it) under the
cullent soltware tech¡ology.

The work presented in this paper is a first step towards a colnpletely integmted hu-
lnan-robot systen. At this point, the human is not yet an agent, but his/her capabilities
can be distributed inside any agent that needs them for augnenting its skills. Our clesign
has seveml imnediate advantages concerning efficiency in huutan-robot coordination
and at the same time enables a high deglee of integration ofthe human into the architec-
ture. ln a fulure work we will analyze the advantages of considering the hurnan as an-
other, complete agent that comlnunicates üth the rest.

The following sections of the paper describe ou¡ framework in more detail. Section 2
gives an overview of the proposed multi-agent architecture. The semantics that enable
inter-agent cor¡rnunication and intra-agent mental states is desc¡ibed in Section 3. Sec-
tion 4 is devoted to the leaming process that allows each agenl to select which intemal
skill is nost appropriate to solve a given action (which includes hunan skills). Section 5
illustrates our approach with a real assistant robotic application. Finally some conclu-
sions and futule work are outlined.

2 ArchitectureOverview

MA2CHRIN, which is an evolution ol a non-agent-based architecture presented else-
where [9]. is a Multi Agent Systen (MAS) cornposed of a variety of agents. Its main
I'eature is that hurlan skills are integrated into those agents. For instance, the human can
help the robot to perceive world infomation (as we have delnonstrated previously in
[4]), or to plovide a plan for achieving a goal (intemcting with the planner agent, as we
have shown in [8]), ol even to physically perform actions like open a door or call an
elevatol'

This is suppolted through the use ofthe Comnon Agent Structtu.e (CAS) as the skele-
ton of each agent (see fig. l). The abilities ofthe agent, both human and robotic, are the
so-called stil/ ,r?¡¡J (see fig.2). Robot¡c skill units represent abilities ifrple[rented by
soi-tware algorithnrs. while htonqn skíll arirs pennit the corulection between humans and
architectufe agents, enabling them to perfonn huuran abilities (i.e., open a door) through
appropriate interlaces (i.e., voice communication).
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Fig. 1� The common agent structure (CAS). All the software agents are designed using this
structure. The nunrber of skill units contained into each agent is variable and it depends ón its
functionality as well as on the human and robot capabilities that the CAS provides. See text for
more detail.

Arnong the different possibilities for accomplishing its tasks an agent should be able
to learn over time the most convenienl one given its past experience and the cuffent
conditions of the environment [14]. Within the CAS skeleton, ihe Smart Selector is in
charge of the agent's leaming process, and it is active every time the agenr operares, tn
order to adapt and optirnize the agent performance under changeable environmental
conditions, as commented in section 4.

All skill units considered by the ,Sr?a¡-l Selector to accomplish a requested action pur-
suit the same goal (i.e. to reach to a destination in the case of navigating), but they ¡ray
exhibit diffe¡ences in the way they are invoked, especially in the case of hurnan units.

The translation lrom a generic action requested by an extemal agent into the skill unit
pa¡ameters is carried out by the Semantíc Bridge. This cornponent also pennits the in-
temals of the agent (SmaÍ Selecto¡ and Skill Units) to requsst/provide data to other
agents of the architecture.

The Semantic Briclge is also in charge ol uraintaining the Senuntic Knov,ledge Base
(SKB) that represents the intemal mental state of the agent in terms of intentions and
beliefs. Such an intemal mental state is updated by Ibe Semantic Br¿dg¿ üth incoming
rnessages or requests l¡om other agents. Communications between agents relies on the
Inter-Agent Interface that provides comr¡unication prirnitives to send/reccrve uressages
following a fixed semantics as commented in mo¡e detail in section 3.
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Fig, 2. Intemal scheme of two skill units. a) A hunan skill unit that permits a person to manu-

ally guide the robot through a dialogue using approp ate interfaces, i.e. via voice. b) a robotic

skill unit that also performs navigation.

3 A Semantics for Agents

ln contmst with traditional software architectures, where conmunication between dif-

ferent pieces of software usually makes intensive use of the clienl-server paradigm (ust

using procedural calls, RPC or any oüer function invocation rrechanism), MAS im-

Doses a much dcher set of inte¡actions between agents. Thus, if communications arc

expected to reflect and aflect the agents' intemal mental states, they should be more

thán rnele raw data, but information about agent attitudes. Hence, üe semantics of in-

teractions must be well defined.
Communications in MA2CHRIN are currently based on üe most commonly used

scheme for MAS, which is message passing. In this approach we use a well-dehned,

standardized message fonnat, the one proposed by FIPA, namely ACL [7]. Moreover'

we have been highly inspired by the CAL specifrcation [6] in order to define the under-

lying semantics of communicative acts.
Agent mental attitudes in our architecture are defined using these operators:

c Belíefs: the operator Bi P means that agent i beliefs that fact p holds true'

. Intentionst the operator Ii 4 means that agent i intents 4 to hold tlue Semantic

meaning of an intention [] diflers from the concept of goa,/ usually used in robot-

ics. lntentions are usually used for invoking the execution ofactions.

The set of commun icative acts or performatíves thatwe are using in MA:CHRIN, and

their associate feasible preconditions (FP) and rational effects (RE), hclude:

. Inform: The intention of an agent i of letting another agentj to know something

that ¡ curently beliefs. Its formal model results as: {<i, inform (/'O)>; FP: Bi 0 ¡

- Bi q¡ 0; RE: B.¡ Q)
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Request: Sende¡ agent requests the ¡eceiver to execute a given action. Its formal
model is: {<i, request (/, a )>; Fp:Fp(a) [rA ^ Bi Agent(/, a) n _B¡ I¡ Done(a);
RE : Done (a) ) , where we have used th e operators: AgentQ,a),. meaning"that agent
j is able of performing action a; Done(a) which means action a has-to be exe_
cúed,, a\d FP(q) [i/, representing the part of Fp(a) which are mental attitudes of

Agree; The agreement ol an agent i to perfonn a requested action for some other
agentJ: {<i, agree(¡, a)> = <1, inform (7, I¡ Done(a))>; Fp: B; cr ir rB¡ B¡ a; RE:
B¡ cr], where for clarity, cr = I¡ Donela¡.
Cancel: Informs to an agentJ that agent I has no longer the intention ol agent j
performing the action a: {<i, cancel (7, a)> = <i, inform(, -I; Done(a)>; Fp: _l¡
Done(a) ,r B; B¡ I¡ Done(a); RE: B¡ -I¡ Done(a))
Failur€: Agent i is intended to perform action a while its preconditions are ful_
filled, but it was not possible to complete it and currently ii intents no longer to
try it: {<1, failure(7, a)> = <i, inform(7, Done(e,Feasible(a) ,^' I¡ Done(a)) ,r
-Done(a) a -I¡ Done(a))>; FP: B¡ o ,a, -B¡ B¡ cr ; RE: B¡ cr], where for clarity,
cr=_Done(e, Feasible(a) a I¡ Done(a)) rr -Done(a) ,n' _I¡ Done(a), and the opera-
tor Feasible(a) means that preconditions lor action a are rnet at tLát time ,
Refuse: Agent i refuses the rcquest ofagentT for performing 4 where $ is the rea_
son of rejection, or true if reason is not supplied. Another possibility is Q being a
textual message in natural language. Its model is: {<i, refuse(7, n ,O)r =.r, ,o_
fomf, -Feasible(a)>; <i, inform(7, Q n -Done(a) ,r -l¡ Done(a)>; ff : B¡ _nea_
sible(a) a B¡ B¡ Feasible(a) A Bi o¿ ,r -Bi B; d; RE: B¡ _Feasible(a) a B¡
cr), where at ; a2 mearls that both actions are sequenced, aná for clarity a = q ,r
-Done(a) ¡ -I¡ Done(a).
Inform-ret This perfonnative contains a B expression, whose meaning is not
standardized, but it is assumed that the receiver agent should be able to evaluate it

|-:ill11 II-11:ll1:: 
a precondirion sr¿rins rhal rh^e.reqresring asenr doesn,r betiofrbar agenrj arrea¡ly has rh€rnrenuon ot peflormrng ¿¡ a condirion lhar becomes false ane¡ receiving an dgl.¿? pe|fomlal¡vc.
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through the proper translation in its semantic bridge. Its formal model is: {<i, in-
foru-r'ef(,0)> = <i, infonl(i, Eval(p))>; FP: B¡ I.¡ Done(<i, inform-ref(, p)>);

RE: B¡ Eval(B)), where Eval(p) represents the expression P evaluated at agentl.

Please note that while we have made many simplifying assurnptions in order to re-
duce the complexity ol standard CAL, our semantics remains very close to the one pro-
posed there and it is self-consistent. In order to transpoú the nessages between agents,
the performatives are sent inside an ACL fo¡n.ratted string, which is coded into an ACL
compliant nessage in plain text fomat.

4 Learning Intra-Agent Skill Selection

In our architecture, agents must leam how to select the appropriate skill unit (either hu-
man or robotic) in order to carry out the agent actions. We have chosen for üat purpose
ReinJbrcement Learning (RL) [10] to be implemented in our Smart Selector, since RL
has a üorouglüy studied lormal foundation and it also seems to obtain good results in
mobile robotics tasks ([12], [17]).

In short, in RL an agent in a state s executes some action a tuming its state into s ' and
gelting a reinforcernent signal or reward r. Those experience tuples (s,a,J',r) are used
for finding a policy n that maximizes sorne long-run measure ofreward.

There is a comprehensive bu¡ch of neüodologies for modelling and solving RL
problems. A well-known solution are Markov Decision Processes (MDPs), that can be
defined by: a set of states S, a set of actions l, a reward or ¡einforcement function "R : S
xl -+91, and a state transition function 7: SxA -+ II(s), where II(s) is a probability
distribution over the set S.

Upon these sets and functions, an optimal policy ¡ that maximizes the obtained re-
wards can be computed though the definition of lbe optimal yqlue of a state f (s),
which is the expected reward that the agent will gain if it starts in that state and executes
the optimal policy:

,"(s) = max(R(r, d) + 7,I7(i, a, r)I/'(r)), Vs € S. (5
-  , i t

Where paranreter y is a discount faclo/ that ¡epresenls how much attention is paid to
future rewards. The optinal policy is then specified by:

a'(s) = arg ¡¡¿*1¡1r,4 + yl�rg,a,s')v' ({D. Q

Both reinforcement and state t¡ansition functions arc natned a modeL However, such
a model is not always known in advance; in fact, most of robotics applications cannot
provide that p or k¡owledge. For model-free problems as the one at hand, we can use a
widely known approach called Q-learning.lt uses the following opümal value function
Q instead of tr/ (s), which can be recursively computed on line by means of:

Qg,a) = QG,a)+ qO + ytnaxeG', o')- eG,a)). (3)

Parameter u is lhe learning rqte, a\d iI must slowly decrease in order to guarantee
convergence of lunction Q to"Q'. Once the optimal Q-íunction Q- is obtained, the opti-
mal policy can be fixed as it was stated in (2).

For illustrating Q-leaming in ou¡ Smafi Selectors, we focus our attention on üe
Nqv¡gqtion Agent. This agent is in charge ofthe performing [rotion actions ofthe rcbot
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(in particular, of our robotic wheelchair). There are three skill units ava able in this
agent: a human skill unit that puts hunan in charge of movement through a joystick, a
path tracker algoritb'r that lollows a previously calculated path, and a robotic reactive
skill unit that ¡nplements a reaclive navigation algorithm I l].

. 
The mathematical formulation ofthe eJearring tectrnique for the Nayigctt¡on Agent

1 S :

- S:{SUCCESS, FAILURE, NAV-OK, NAV_NOK}. SUCCESS means that the
robot has reached its objective. FAILURE rep¡esents those situatrons where the
vehicle stops outside its goal, due to some unexpected problern. If the robot is
tavelling üth normality, it is in NAV_OK state. Howéver, if difficulties arise
during navigation' the robot tums to NAV_NOK state. Transitions ¿urons smres
are displayed in fig. 4.

- ,4 simply matches the set ofskill units.
- The reinforcement function R is considered as a suur of relevant factors, namely:

ability for obstacle avoidance, energetic consumption, path tracking curvatuie
changes, and distance to the goal.

Fig. 4. State transition diagram for th€ Navigation Agent.

5 A Real Robotic Assistant Application

MA2CHRIN has been tested on an assistant robot called SENA (see fig 5). It is a robotic
wheelchair based on a commercial powered wheelchair that has be-en equipped with
several sensors and an onboard computer to reliably perform highJevel tasks in indoor
environments sENA accounts fo¡ \vi-Fi cor¡rection capabilitieJthat i'rp¡ove ro a grcat
extend the possibilities of our robot, ranging from telé-operaüon of the vehicre to the
human drivel access to intemet.

Our tests have been carried out within our lab and near corridors, in which the user
can select a destination via yoice. Since the main operation of SENA is navigation, we
have locussed our experiences on the leaming process of the agent devoted to this type
of task. We have conside¡ed th¡ee different skill units within 

-the 
navigation agent, as

described in section 4.
For a navigation task, the Plan¡er agent interacts with the user 1as described in [g])for constructing the best route to the goal. Wjth the route available, the Navigatiá

Agent executes each navigation step. All the communications that arise in this scheme
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follow the semantics described in section 3. When each navigation step arrives at the
Navigation Agent, its Se[rantic Bridge translates it to the Smart Selector for performing
the action. The Smafi Selector then runs the QJearning algoritbür.

Fig. 5. Two views ofthe SENA robotic wheelchair in which we have evaluated our human-
robot integration architecture.

Our findings indicate that the Q-ñ.rnction really converges to a certain value after an
appropdate number of leaming steps. Fig. 6 shows, for states FAILURE, NAV,OK and
NAV_NOK, how Q-function of every action (HUMAN, ROBOT_DEL and HUMAN,
respectively) hnally converges.

Fig. 6. Q function values for states NAV_OK and NAV_NOK. For each state, the best
cboices are Robotic Delibemtive and Human, respectively.

It can also be noticed that, for a given state, the maximum value of üe Q funcüon
changes among different actions. This means that, üough initially Q-leaming chooses a
ce ain action, as execution progresses another action can be discovered as the best
suited option for navigation. To illustrate this, refer to fig. 7: until learning step 10, it is
ROBOT_DEL who provides best Q function value; then, until app¡oximately leaming
step 70, best action tums to ROBOT_REA; frnally, HUMAN becomes the most fitüng
value.



r
I
l 4 ' " IN1 ' [RNAI ' IONALWORKSI IOPONPRACI ]C LAPPLILAI IONSOI 'ACEN¡SANDMULf IACENISYS' ILJN1S 243

Fig. 7. Q function valUes for the FAILURE state. In this case the best choice is Hunran.

Finally, we have also noticed that the hurnan skill unit is mostly leamed l.or those states
coresponding to dsky or difficult situations (FAILURE and NÁV NOK srates).

6 Conclusions and Future Work

Usually, human-robot interaction is conside¡ed to be as a sinple comurunication be_
tween the robot architecture and the human. However, we claim that in asststant robot_
ics, a nruch stronger interaction is needed: the hurran, in fact, must be ¡ntegrated ínto
the rcbotic Irchítecture.

_ 
For that purpose, we have presented in this paper a multi-agent robotic architecture

that enables such human-robot integration. We believe that a mrilti_agenr sysrelt ls rnore
approp ate.than conventional approaches since agents are closer toiepresent hulnan as
a paú of the systen than other software constiuctions (modules, procedures, etc.).
Agents, as well as humans, have intentions, mentar states, and use-some semantics in
their communications. In addition, they posses some leaming capabilities that allow
them to adapt to envirorunental changes and to achieve good pe-rformances ovel trrne.
_ 

This paper is a first step towards the inclusion ofthe human as an agent within the ar_
chitecturc. At this stage, the human is not yet an rgent, bur his/her cipabilities are dis_
trib_uted hside any agent that needs them for augmenting its skills.

When an agent is endowed with a set of skill unitJfor performing some actron, rt
must decide wtich skill unit (including both robotic and human ones) is the best at each
situation- We have itlplemented a eJéaming procedure that learns this ussocration over
time, trying to optimize the behavior ofthe system at long_terlr.r.

We have also defined the semantics for the agents to clom¡¡unicate and maintain their
inte¡nal mental states, as well as how this semÁtics is tlanslated into practrcal tequests
lor the algoritluns ofthe architecture.

^"t1]n: 
t ly'., we wil l analyze tbe effecrs ofincluding the human as one ofthe agenrs

oI the arclxtecture. We will also continuing on working with assistant robots (such asour robotic wheelchair) in order to implement solutions for the rcal requrrements of as_
slstance applications.
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