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Abstract. A recent and promising area of research in robotics is aimed to develop
robots that share the same physical environment as humans. In this area, the most
relevant issue is not autonomy of the robot but the intelligent interaction or coop-
eration with humans. Some particular instances are service robots (museum guides,
surveillance, etc.) and assistant robots (elderly care, telesurgery, etc.), where the
latter usually exhibit closer interaction with humans than the former. In this paper
we identify and use multi-agent technology as a suitable approach for developing
assistant robot architectures, since it enables a very close interaction —namely, inte-
gration- with humans (by considering the human as part of the robot architecture)
and it is also capable of learning the best way of coordinating both robot and hu-
man skills (through reinforcement learning). We illustrate the approach with our
robotic wheelchair SENA, a mobile robot intended for assistance to handicapped
persons,

1 Introduction

Robotic applications that interact with humans have recently attracted great attention
from the scientific community. One of the reasons is that the presence of a human that
can interact with the robot may relax some of the requirements demanded from com-
plete autonomous robots.

Among robots that interact with humans, maybe the most studied ones are service ro-
bots (that carry out limited tasks in human populated scenarios such as museums, hospi-
tals, etc.) and assistant robots (which can not work without humans at all, for example
surgery robots, assistant robots for elderly people, artificial limbs, etc). Human-robot
interaction becomes an important requirement in these applications. They also bear two
important characteristics that make them distinctive from others: on the one hand, they
impose some critical issues such as operating robustness, physical safety, and human-
friendly interaction (which have been coped recently by the Human Centered Robotics
(HCR) paradigm ([11], [13]). On the other hand, the human becomes in fact so inte-
grated into the assistant robot that it is no more merely a part of the environment.

In the literature, human participation in the robotic operation is not a new idea. Some
terms have been coined to reflect this, such as cooperation [19], collaboration [5], or
supervision ([5], [15]), but all of them deal with the human as being external to the ro-
bot. We propose here to take a step further: to consider the human as one of the compo-
nents of the robotic application. This is specially evident in applications where the hu-
man can be considered physically as a part of the robot, such as robotic wheelchairs or
artificial limbs. In these situations we should talk of human-robot integration rather
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than human-robot interaction. We can obtain the following benefits from such integra-
tion:

-Augment the robot capabilities with new skills. Humans can perform actions beyond
the robot capabilities, i.e. to open a door, to take an elevator.

-Improve the robot skills. Humans may carry out actions initially assigned to the ro-
bot in different and sometimes more dependable ways, or may complete robot actions
that have failed.

Our approach uses a multi-agent software robotic architecture, that we call
MAZCHRIN (the acronym for “Multi-Agent Architecture for Close Human-Robot Inte-
gration”) for such integration. This framework is more appropriate than a classical hy-
brid layered (deliberative-reactive) architecture [16], since a software agent is the clos-
est we can be to represent the human within the architecture (as a part of it) under the
current software technology.

The work presented in this paper is a first step towards a completely integrated hu-
man-robot system. At this point, the human is not yet an agent, but his/her capabilities
can be distributed inside any agent that needs them for augmenting its skills. Our design
has several immediate advantages concerning efficiency in human-robot coordination
and at the same time enables a high degree of integration of the human into the architec-
ture. In a future work we will analyze the advantages of considering the human as an-
other, complete agent that communicates with the rest.

The following sections of the paper describe our framework in more detail. Section 2
gives an overview of the proposed multi-agent architecture. The semantics that enable
inter-agent communication and intra-agent mental states is described in Section 3. Sec-
tion 4 is devoted to the learning process that allows each agent to select which internal
skill is most appropriate to solve a given action (which includes human skills). Section 5
illustrates our approach with a real assistant robotic application. Finally some conclu-
sions and future work are outlined.

2 Architecture Overview

MAZCHRTN, which is an evolution of a non-agent-based architecture presented else-
where [9], is a Multi Agent System (MAS) composed of a variety of agents. Its main
feature is that human skills are integrated into those agents. For instance, the human can
help the robot to perceive world information (as we have demonstrated previously in
[4]), or to provide a plan for achieving a goal (interacting with the planner agent, as we
have shown in [8]), or even to physically perform actions like open a door or call an
elevator.

This is supported through the use of the Common Agent Structure (CAS) as the skele-
ton of each agent (see fig. 1). The abilities of the agent, both human and robotic, are the
so-called skill units (see fig.2). Robotic skill units represent abilities implemented by
software algorithms, while human skill units permit the connection between humans and
architecture agents, enabling them to perform human abilities (i.e., open a door) through
appropriate interfaces (i.e., voice communication).
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Fig. 1. The common agent structure (CAS). All the software agents are designed using this
structure. The number of skill units contained into each agent is variable and it depends on its

functionality as well as on the human and robot capabilities that the CAS provides. See text for
more detail.

Among the different possibilities for accomplishing its tasks an agent should be able
to learn over time the most convenient one given its past experience and the current
conditions of the environment [14]. Within the CAS skeleton, the Smart Selector is in
charge of the agent’s learning process, and it is active every time the agent operates, in
order to adapt and optimize the agent performance under changeable environmental
conditions, as commented in section 4.

All skill units considered by the Smart Selector to accomplish a requested action pur-
suit the same goal (i.e. to reach to a destination in the case of navigating), but they may
exhibit differences in the way they are invoked, especially in the case of human units.

The translation from a generic action requested by an external agent into the skill unit
parameters is carried out by the Semantic Bridge. This component also permits the in-

ternals of the agent (Smart Selector and Skill Units) to request/provide data to other
agents of the architecture.

The Semantic Bridge is also in charge of maintaining the Semantic Knowledge Base
(SKB) that represents the internal mental state of the agent in terms of intentions and
beliefs. Such an internal mental state is updated by the Semanric Bridge with incoming
messages or requests from other agents. Communications between agents relies on the
Inter-Agent Interface that provides communication primitives to send/receive messages
following a fixed semantics as commented in more detail in section 3.

F
|
|
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Fig. 2. Internal scheme of two skill units. a) A human skill unit that permits a person to manu-
ally guide the robot through a dialogue using appropriate interfaces, i.e. via voice. b) a robotic
skill unit that also performs navigation.

3 A Semantics for Agents

In contrast with traditional software architectures, where communication between dif-
ferent pieces of software usually makes intensive use of the client-server paradigm (just
using procedural calls, RPC or any other function invocation mechanism), MAS im-
poses a much richer set of interactions between agents. Thus, if communications are
expected to reflect and affect the agents’ internal mental states, they should be more
than mere raw data, but information about agent attitudes. Hence, the semantics of in-
teractions must be well defined.

Communications in MA2CHRIN are currently based on the most commonly used
scheme for MAS, which is message passing. In this approach we use a well-defined,
standardized message format, the one proposed by FIPA, namely ACL [7]. Moreover,
we have been highly inspired by the CAL specification [6] in order to define the under-
lying semantics of communicative acts.

Agent mental attitudes in our architecture are defined using these operators:

e Beliefs: the operator B, p means that agent 7 beliefs that fact p holds true.

e Intentions: the operator I; ¢ means that agent i intents ¢ to hold true. Semantic
meaning of an intention [1] differs from the concept of goal usually used in robot-
ics. Intentions are usually used for invoking the execution of actions.

The set of communicative acts or performatives that we are using in MAZCHRIN, and
their associate feasible preconditions (FP) and rational effects (RE), include:

e Inform: The intention of an agent i of letting another agent j to know something
that i currently beliefs. Its formal model results as: {<i, inform (7,0)>; FP: Bi ¢ A
- BiB; ¢; RE: B; ¢}
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* Request: Sender agent requests the receiver to execute a given action. Its formal
model is: {<i, request (j, @ }>; FP:FP(a) [i/j] A B; Agent(j, a) A —B; I; Done(a);
RE: Done (a)}, where we have used the operators: 4 genl(j,a), meaning that agent
J is able of performing action a; Done(a) which means action @ has to be exe-
cuted; and FP(a) [i/j] representing the part of FP(a) which are mental attitudes of
i

* Agree: The agreement of an agent i to perform a requested action for some other
agent j: {<i, agree(j, a)> = <i, inform (j, I; Done(a))>; FP: B; oc A —B; B; a; RE:
B; o}, where for clarity, o = I; Done(a).

® Cancel: Informs to an agent j that agent i has no longer the intention of agent j
performing the action @: {<i, cancel (j, a)> = <i, inform(j, —I; Done(a)>; FP: —I;
Done(a) A B; B; I; Done(a); RE: B; —I; Done(a)}

® Failure: Agent / is intended to perform action a while its preconditions are ful-
filled, but it was not possible to complete it and currently it intents no longer to
try it: {<i, failure(j, a)> = <i, inform(7, Done(e,Feasible(a) A I, Done(a)) A
—Done(a) A =l Done(a))>; FP: B; o0 A —B; Bj a; RE: B; o}, where for clarity,
o= Done(e, Feasible(a) A I; Done(a)) A —Done(a) A —I; Done(a), and the opera-
tor Feasible(a) means that preconditions for action @ are met at that time.

* Refuse: Agent i refuses the request of agent J for performing a, where ¢ is the rea-
son of rejection, or true if reason is not supplied. Another possibility is ¢ being a
textual message in natural language. Its model is: {<i, refuse(j, a ,0)> = <i, in-
form(j, —Feasible(a)>; <i, inform(j, ¢ A —Done(a) A —l; Done(a)>; FP: B; —Fea-
sible(a) A B; B; Feasible(a) A B; o A —B; B; o; RE: Bj —Feasible(a) A B;
o}, where a; ; a, means that both actions are sequenced, and for clarity oo = ¢ A
—Done(a) A —I; Done(a).

* Inform-ref: This performative contains a B expression, whose meaning is not
standardized, but it is assumed that the receiver agent should be able to evaluate it

! Note that FP includes a precondition staling that the requesting agent doesn’( belief that agent j already has the
intention of performing a, a condition that becomes false after receiving an agree performative.
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through the proper translation in its semantic bridge. Its formal model is: {<i, in-
form-ref(j, B)> = <i, inform(j, Eval(B))>; FP: B; I; Done(<i, inform-ref(j, B)>);
RE: Bj Eval(B)}, where Eval() represents the expression [ evaluated at agent ;.

Please note that while we have made many simplifying assumptions in order to re-
duce the complexity of standard CAL, our semantics remains very close to the one pro-
posed there and it is self-consistent. In order to transport the messages between agents,
the performatives are sent inside an ACL formatted string, which is coded into an ACL
compliant message in plain text format.

4 Learning Intra-Agent Skill Selection

In our architecture, agents must learn how to select the appropriate skill unit (either hu-
man or robotic) in order to carry out the agent actions. We have chosen for that purpose
Reinforcement Learning (RL) [10] to be implemented in our Smart Selector, since RL
has a thoroughly studied formal foundation and it also seems to obtain good results in
mobile robotics tasks ([12], [17]).

In short, in RL an agent in a state s executes some action a turning its state into 5’ and
getting a reinforcement signal or reward r. Those experience tuples (s,a,s’r) are used
for finding a policy w that maximizes some long-run measure of reward.

There is a comprehensive bunch of methodologies for modelling and solving RL
problems. A well-known solution are Markov Decision Processes (MDPs), that can be
defined by: a set of states S, a set of actions 4, a reward or reinforcement function R : S
x A —R, and a state transition function T : S x 4 — [I(s), where I1{s) is a probability
distribution over the set S.

Upon these sets and functions, an optimal policy 7 that maximizes the obtained re-
wards can be computed through the definition of the optimal value of a state ¥'(5),
which is the expected reward that the agent will gain if it starts in that state and executes
the optimal policy:

V'(s)=max(R(s,a)+ ¥ T(s,a,s')V"(s")),Vse S - (S

ses§

Where parameter vy is a discount factor that represents how much attention is paid to
future rewards. The optimal policy is then specified by:

7 (s)=arg max(R(s,a)+yZT(s,a,s')V'(s'))- 2
a S.ES
Both reinforcement and state transition functions are named a model. However, such
a model is not always known in advance; in fact, most of robotics applications cannot
provide that prior knowledge. For model-free problems as the one at hand, we can use a
widely known approach called Q-learning. It uses the following optimal value function
Q" instead of V' (s), which can be recursively computed on line by means of:

O(s,a) = O(s,a) + o(r + ymax O(s", ") — O(s, a)) - 3

Parameter o. is the learning rate, and it must slowly decrease in order to guarantee
convergence of function Q to Q. Once the optimal Q-function Q" is obtained, the opti-
mal policy can be fixed as it was stated in (2).

For illustrating Q-learning in our Smart Selectors, we focus our attention on the
Navigation Agent. This agent is in charge of the performing motion actions of the robot
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(in particular, of our robotic wheelchair). There are three skill units available in this
agent: a human skill unit that puts human in charge of movement through a joystick, a
path tracker algorithm that follows a previously calculated path, and a robotic reactive
skill unit that implements a reactive navigation algorithm [1].

The mathematical formulation of the Q-learning technique for the Navigation Agent
is:

- S={SUCCESS, FAILURE, NAV_OK, NAV NOK}. SUCCESS means that the
robot has reached its objective. FAILURE represents those situations where the
vehicle stops outside its goal, due to some unexpected problem. If the robot is
travelling with normality, it is in NAV_OK state. However, if difficulties arise
during navigation, the robot turns to NAV_NOK state. Transitions among states
are displayed in fig. 4.

- A simply matches the set of skill units.

- The reinforcement function R is considered as a sum of relevant factors, namely:

ability for obstacle avoidance, energetic consumption, path tracking curvature
changes, and distance to the goal.

S

Fig. 4. State transition diagram for the Navigation Agent.

5 A Real Robotic Assistant Application

MA?CHRIN has been tested on an assistant robot called SENA (see fig 5). It is a robotic
wheelchair based on a commercial powered wheelchair that has been equipped with
several sensors and an onboard computer to reliably perform high-level tasks in indoor
environments. SENA accounts for Wi-Fi connection capabilities that improve to a great
extend the possibilities of our robot, ranging from tele-operation of the vehicle to the
human driver access to internet.

Our tests have been carried out within our lab and near corridors, in which the user
can select a destination via voice. Since the main operation of SENA is navigation, we
have focussed our experiences on the learning process of the agent devoted to this type
of task. We have considered three different skill units within the navigation agent, as
described in section 4,

For a navigation task, the Planner agent interacts with the user (as described in [8])
for constructing the best route to the goal. With the route available, the Navigation
Agent executes each navigation step. All the communications that arise in this scheme
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follow the semantics described in section 3. When each navigation step arrives at the
Navigation Agent, its Semantic Bridge translates it to the Smart Selector for performing
the action. The Smart Selector then runs the Q-learning algorithm.

o
Front view Back view

Fig. 5. Two views of the SENA robotic wheelchair in which we have evaluated our human-
robot integration architecture.

Our findings indicate that the Q-function really converges to a certain value after an
appropriate number of learning steps. Fig. 6 shows, for states FAILURE, NAV_OK and
NAV_NOK, how Q-function of every action (HUMAN, ROBOT DEL and HUMAN,
respectively) finally converges.

Buate VX S Hsti

i t R ERE R

g

70
Lewneg s

Fig. 6. Q function values for states NAV_OK and NAV_NOK. For each state, the best
choices are Robotic Deliberative and Human, respectively.

It can also be noticed that, for a given state, the maximum value of the Q function
changes among different actions. This means that, though initially Q-learning chooses a
certain action, as execution progresses another action can be discovered as the best
suited option for navigation. To illustrate this, refer to fig. 7: until learning step 10, it is
ROBOT_DEL who provides best Q function value; then, until approximately learning
step 70, best action turns to ROBOT_REA; finally, HUMAN becomes the most fitting
value. 3
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Fig. 7. Q function values for the FAILURE state. In this case the best choice is Human.

Finally, we have also noticed that the human skill unit is mostly learned for those states
corresponding to risky or difficult situations (FAILURE and NAV_NOK states).

6 Conclusions and Future Work

Usually, human-robot interaction is considered to be as a simple communication be-
tween the robot architecture and the human. However, we claim that in assistant robot-
ics, a much stronger interaction is needed: the human, in fact, must be integrated into
the robotic architecture.

For that purpose, we have presented in this paper a multi-agent robotic architecture
that enables such human-robot integration. We believe that a multi-agent system is more
appropriate than conventional approaches since agents are closer to represent human as
a part of the system than other software constructions (modules, procedures, etc.).
Agents, as well as humans, have intentions, mental states, and use some semantics in
their communications. In addition, they posses some learning capabilities that allow
them to adapt to environmental changes and to achieve good performances over time.

This paper is a first step towards the inclusion of the human as an agent within the ar-
chitecture. At this stage, the human is not yet an agent, but his/her capabilities are dis-
tributed inside any agent that needs them for augmenting its skills.

When an agent is endowed with a set of skill units for performing some action, it
must decide which skill unit (including both robotic and human ones) is the best at each
situation. We have implemented a Q-learning procedure that learns this association over
time, trying to optimize the behavior of the system at long-term.

We have also defined the semantics for the agents to communicate and maintain their
internal mental states, as well as how this semantics is translated into practical requests
for the algorithms of the architecture.

In the future, we will analyze the effects of including the human as one of the agents
of the architecture. We will also continuing on working with assistant robots (such as

our robotic wheelchair) in order to implement solutions for the real requirements of as-
sistance applications.
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